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Abstract—As we connect more microcontrollers to the Internet
and employ them to control the physical world around us,
their reliability and security is increasingly important. Many
microcontrollers provide limited facilities for hardware isolation,
and real-time OSes offer custom APIs, that require coupling
applications into the ecosystem and abstractions of that specific
OS to leverage isolation.

This paper investigates the use of software sandboxing of
applications to support isolation for resource constrained devices.
Toward this, we detail the design of eWASM, a processes abstrac-
tion that adapts a popular sandbox, Wasm, for microcontrollers.
eWASM provides a runtime to constrain memory accesses and
control flow, enabled by our aWsm Wasm compiler. We discuss
and evaluate its multiple implementations that effectively trade
time and space, optimizing for the constraints of embedded
systems. This enables popular languages (e.g., C) to be effectively
sandboxed by software. We demonstrate performance within
40% of native C on Polybench. We believe this is a practical
and compelling result for many IoT domains, and it represents
the first compiled sandboxing environment for microcontrollers.
We show that restrictions of the current Wasm specification lead
to significant memory consumption and provide suggestions for
the creation of an embedded-specific Wasm variant.

Index Terms—Web Assembly, Software Fault Isolation,
Control-Flow Integrity, Embedded Systems, Sandboxing

I. INTRODUCTION

Industry 4.0 and the Internet of Things are driving the inte-

gration of microcontrollers into IoT networks that effectively

interconnect sensors and actuators to provide useful context

about the environment. Arm believes that a trillion new IoT

devices will be produced by 2035 [1]. At the same time as

embedded systems are increasingly exposed to a network con-

nection, their complexity is significantly increasing. Network

connections open the embedded systems to malicious intents,

meaning that even a single buggy line of code can lead to

compromise, threatening the controlled physical assets, and

potentially human safety.

Unfortunately, current microcontroller software stacks are

complicated to use in trustworthy embedded systems. These

stacks generally lack strong facilities for isolation. Lacking

isolation, compromises or faults can allow malicious code

to alter parameters (e.g., replacing a and b in memset(a, 0,

b) with SRAM BASE, and SRAM SZ), or hijack control flow.
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For example, a buffer overflow in telnet can corrupt UAV

flight software [2]. Isolation mechanisms decompose code and

data into separate protection domains, each of which can only

access the resources within that domain. Short of full system

verification, defense-in-depth practices motivate constraining

the effects of any errant or compromised behavior, so they

impact a controlled subset of the system.

Hardware support is often used to isolate applications

from each other and the OS from applications. Dual-mode

protection enables the kernel code to be inaccessible from

applications, at the cost of requiring mode transitions. In ad-

dition, Memory Protection Units (MPUs), which are common

in microcontrollers, enable the partitioning of memory into

subsets, each accessible by separate applications. MPUs are

limited in that they can only protect a finite (small) number of

memory regions, and some implementations have significant

alignment constraints on those regions. Despite this, research

has used them to provide an isolation infrastructure based on

VMs [3], to protect user-level applications [4], and, when

interwoven into code, to inline the protection switches [5].

MPUs require OS, hardware, and build-system support, thus

tend to require integration between OS and application (i.e.,

the application to use custom OS abstractions). Unfortunately,

the uptake of hardware memory isolation has been limited in

microcontrollers.

As one alternative, software techniques for type safety

and for memory safety are promising avenues to provide

isolation without relying on hardware features nor OS support.

Languages, that provide type safety, ensure that all memory

accesses adhere to the proper type of the data being accessed.

Thus, memory accesses are constrained only to memory

provided by the language runtime, and are prevented from

corrupting other applications and OS data. The popularity

of scripting languages including javascript, python, and lua

(through duktape, micropython, and the lua interpreter,

respectively) demonstrates the appeal of a safe programming

environment.

As a second alternative, Software Fault Isolation (SFI [6])

techniques provide memory safety, in which loads and stores

are constrained to a sandbox. When this data sandboxing is

paired with control flow integrity (CFI) [7] – which ensures

that execution can only follow paths intentionally generated

by the compiler – the application’s execution and memory

accesses are constrained to the sandbox. Unlike in systems that

use type safety, sandboxed environments allow the application

to freely access any memory within the sandbox. This property

enables legacy, widely deployed, and unsafe code written in



languages such as C to execute with the benefits of isolation.

There is a long history of research into SFI sandboxes [6],

[8], [9], [10], [11], [12], [13], and they have been broadly

deployed in web browsers [11]. There has been less research

into sandboxes on microcontrollers [13], [14], despite their

potential to increase isolation in an environment, where limited

resources encourage legacy and unsafe code. SFI approaches

ensure memory safety by inserting software checks on load

and store instructions to bounds-check their target addresses.

To ensure CFI, indirect function call invocations (through

function call pointers) have their target address and function

types validated when invoked. Additionally, the return address

saved in the invocation stack must be protected from buffer

overflow attacks, often by separating out a control stack to

save these addresses, and a data-stack to pass variables [13].

Unfortunately, the overheads of performing the necessary SFI

checks are a concern, given the limited resources of micro-

controllers [15]: ”The [...] pure software mechanism based on

Software Fault Isolation [6] would be too expensive for our

embedded applications because it requires that all memory

operations in a program are masked”. Memory consumption

is an additional concern for SFI sandboxes: all checks require

additional instructions, increasing ROM size. Thus, in this

paper, we design various sandboxing implementations and

analyze their trade-offs in computation and memory. We

believe this shows the practicality of SFI and its ability to

provide strong isolation in resource constrained systems.

SFI standardization: WebAssembly (Wasm). There has been

a popular effort to standardization of SFI in WebAssembly [16].

Despite the name, Wasm is a general sandboxing standard

applicable beyond web browsers. It defines an intermediate

assembly language (Wasm) and a semantics for that language.

Different implementations exist for Wasm, and interpreters are

gaining popularity on microcontrollers (see Wasm3 [17]). The

Wasm standard has the significant benefits that it has created a

strong community, an expansive set of tools for managing and

debugging Wasm, and broad language support for compiling

to Wasm (many LLVM [18]-supported languages).

Motivated by the strengths of standardization, this paper

introduces eWASM– a Wasm compiler1 and runtime for

embedded devices. In addition to providing a Wasm runtime,

eWASM enables an evaluation of various generic mechanisms

for memory bounds checking and exploration of the trade-offs

between the processing efficiency and memory consumption.

The research questions we aim to answer include the following

ones:

• How should memory bounds checks within a sandbox be

designed to provide effective resource usage and strong

isolation?

• What performance can be achieved relative to native code

and a Wasm interpreter?

• What adaptations to the Wasm standard are needed to

support and optimize for the embedded systems?

Contributions. The paper offers the following contributions:

1Our Wasm compiler is called aWsm and is open-sourced along with
eWASM at www.github.com/gwsystems/awsm/.

• We detail the design and implementation of eWASM: an

efficient sandbox for strong SFI targeting Arm Cortex-M

microcontrollers.

• We investigate various mechanisms for sandbox memory

isolation and demonstrate their trade-offs in CPU and

memory efficiency. This analysis leads us to a solution

that supports the fastest sandbox for microcontrollers (to

the best of our knowledge).

• Finally, we investigate and analyze these mechanisms to

identify the aspects of the Wasm specification that are ill-

suited for using the limited resources of microcontrollers

and provide the suggestions for creating an embedded-

specific Wasm variant.

II. RELATED WORK

Type safe languages. There is long history of using safe

languages in embedded systems. TinyOS’ nesC [19] used a

type-safe environment, paired with a component-based sys-

tem composition style to program deeply embedded systems.

Tock [4] uses the Rust language to enable type-safe capsules

in the kernel to extend system functionality, while using the

MPU to isolate user-level applications. Both rely on cooper-

ative scheduling for components/capsules. eWASM provides

a process model with preemptive scheduling, and focuses on

providing a secure application sandbox more-so than system

extensibility.

Type-safe languages such as javascript, lua, and python

(through duktape, lua, and micropython, respectively) have

proven to be popular programming environments for IoT

devices. They enable a safe programming environment in a

high-level language that is used to dynamically extend device

functionality. In contrast, eWASM leverages the language-

independent Wasm environment to execute a large array of

languages in a safe sandbox with performance that is both

better and more predictable than a comparable interpreter.

Memory safe runtimes. Software sandboxing techniques have

a long history [6], [8], [9], [10], [11], [12], [13], [14]. Some

focus on the verification of the sandbox [12], [13], while others

only focus on CFI [14].

Most of these efforts focus on non-resource-constrained sys-

tems and microprocessors. In contrast, ARMor [13] provides

a verified sandbox for microcontrollers, but does not constrain

loads. By not limiting the loads, this approach does not

provide confidentiality as all memory can be accessed. This is

particularly dangerous on microcontrollers as devices are often

memory mapped, thus safety is dependent on each device’s

semantics. ARMor does not focus on, nor extensively evaluate

performance (between 10% and 240% slowdowns despite

unconstrained loads). Walls [14] find that CFI alone on mi-

crocontrollers imposes a 30% slowdown. In contrast, eWASM

imposes on average a 40% slowdown (§VI-A) when providing

both CFI and strong memory safety (for both loads and stores).

eWASM evaluates how various implementations of memory

safety for SFI trade efficiency and memory consumption This

includes a novel software page-table mechanism that enables

non-contiguous, fine-grained memory allocations. Importantly,

using a safe intermediate representation (Wasm), enables the



elision of some memory safety tests (e.g., by lifting them out

of loops), and lays the foundation for language-independent

binaries that can be retargeted between microcontrollers and

more capable hardware (e.g., in the cloud).

Hardware isolation mechanisms. In contrast to these soft-

ware techniques, past research has investigated using hardware

to provide isolation. Systems have explicitly leveraged hard-

ware to increase isolation: from virtual machine abstractions

using MPUs [3], to Cortex-M Trustzone [20], to fine-grained

switching between modes inlined into code [5]. Others have

used compiler and static analysis techniques to provide CFI

checks on sensitive instructions using dual mode execution

hardware [15], and to automatically separate system code into

MPU-isolated compartments [21], [22]. These approaches do

not provide strong isolation within a compartment, instead

attempting to reduce CFI threats. These works differ from

eWASM in the following ways: (1) eWASM provides strong

CFI within the sandbox, while also preventing access to mem-

ory or control outside of the sandbox. (2) eWASM focuses

on sandboxing a subset of code, while these other approaches

attempt to provide stronger isolation for all microcontroller

code (e.g., including the RTOS). (3) eWASM has no hardware

isolation dependencies, thus avoids conflicting with how the

RTOS or surrounding software use the MPU. This enables the

use of eWASM in existing software systems by linking with

the sandbox at compile time.

Wasm runtimes. Wasm interpreters (including [23], [17])

focus on debuggability and interpreter performance. These

runtimes are often between 14 and 25 times slower than native

C (as we show in §VI-D). Though useful for dynamically

updating system code and debugging, interpreted code is not

applicable for code that must be predictable and/or efficient.

We find that when performance is increased to within a factor

of 2x native C, the mechanisms for memory sandboxing are

a dominant factor in determining performance and memory

consumption. A focus of this paper is to closely examine

existing and novel mechanisms for this.

eWASM summary. This paper presents the first SFI sandbox

for microcontrollers that targets performance and memory

consumption that suffer only a relatively small degradation

compared to C. eWASM investigates various memory isola-

tion mechanisms, and applies them to an existing SFI standard

(Wasm). We focus on Wasm to pragmatically leverage its

extensive existing software ecosystem.

III. WASM BACKGROUND

This paper investigates the use of WebAssembly

(Wasm) [16] to provide memory and control sandboxing

of embedded code. Wasm is a portable, language-agnostic,

low-level bytecode paired with a runtime semantics, which

provides a memory-light sandbox for untrusted execution

based on software fault isolation [6] and control flow

integrity [7]. Despite being driven by web standards bodies,

the specification has been designed to work outside the

browser as well, and there are numerous implementations

for non-Web environments. No efficient implementation

exists for deeply embedded system on microcontrollers with

performance and predictability on par with native code. This

paper investigates mechanisms for efficient sandboxing on

microcontrollers, evaluating their trade-offs, and providing

suggestions for a version of the Wasm standard customized

for embedded systems. This section focuses on the existing

Wasm standard, and its properties, and does not discuss this

work’s contributions.

The key features of Wasm include the following:

• Efficiency. WebAssembly targets near native speed while

only assuming common hardware capabilities.

• Safety. WebAssembly describes a memory-safe, sandboxed

execution environment based on restricted memory access

and control flow. Wasm sandboxes, despite the name, may

be linked into non-Web programs.

• General execution environment. Unlike language-specific

bytecodes that define typed object layouts and differentiate

between memory containing pointers and memory contain-

ing integer values, Wasm exposes access only to an untyped

(yet bounded) array of bytes. This enables the execution of

low-level languages such as C within the sandbox.

• Open and debuggable. WebAssembly provides a human-

readable textual format [24] to simplify learning, debug-

ging, and optimization tasks.

Memory-safety. Code execution within the Wasm sandbox

is only able to access memory within a contiguous linear

memory region. Each Wasm memory access addresses linear

memory at an offset from the base, L, of the linear memory.

Thus, there is some amount of address virtualization as an

address N in the sandbox is located at L + N in physical

memory (assuming linear memory is laid out contiguously).

Additionally, accesses are only allowed within linear memory,

i.e., accessing an address beyond the linear memory’s size

generates a sandbox violation. Thus, the Wasm runtime is re-

sponsible for translating linear memory accesses, and bounds-

checking them to prevent accesses outside the sandbox. These

checks are a foundation for the Wasm sandbox’s isolation.

Linear memory is dynamically sized. It is extended in incre-

ments of a 64KiB page size, when asked to expand memory.

The bounds checking logic is correspondingly updated.

Control-flow integrity. Sandboxing untrusted execution re-

quires control-flow integrity (CFI) [7], which constrains exe-

cution to a safe control flow graph, considered by the compiler.

Wasm achieves this using two mechanisms: a data stack and

a validated function pointer dispatch.

Wasm code’s execution stack must be protected from a

potentially malicious logic within the Wasm code. This is

required to prevent stack smashing attacks that overwrite func-

tion return address values. Thus, the execution stack should

be outside of linear memory. Unfortunately, this complicates

passing pointers to stack-allocated variables. To prevent these

pointers from accessing the stack arbitrarily, Wasm separates

the execution stack into (1) the execution stack tracking func-

tion calls and local variables external to linear memory (2) a

data stack within linear memory containing stack-allocated

variables.

Wasm dynamically ensures that only valid function pointers

are called by sandboxed code. This is ensured by requiring





A. Control-Flow Integrity

The Wasm specification ensures strong control flow integrity

such that code inside the sandbox can only execute code gener-

ated to maintain the sandbox protection. Wasm’s emphasis on a

structured control flow lets us easily ensure the generated code

does not branch to unexpected locations. eWASM implements

the Wasm standard’s CFI mechanisms in a straightforward

manner, but we discuss the design here for completeness. The

design of CFI in Wasm considers three main control structures:

Direction function calls. The compilation process is con-

strained by structured control flow based on conditionals,

loops, and function calls. We statically ensure that all direct

branches are to valid targets, thus the only way to violate

control flow is to jump indirectly. In C environments, control

flow is typically compromised with either indirect function

calls (e.g., heap smashing) and stack corruption (e.g., stack

smashing).

Indirect function calls. Indirect functions calls are caused by

function pointer invocations, for example, through virtual func-

tion tables or function arguments (e.g., qsort’s comparator

argument). The Wasm specification strictly controls indirect

function calls. It forces all indirect calls to go through a global

table of function pointers. This table is statically initialized

with the valid addresses of functions and their types. At

runtime, the invoked function pointer is replaced with an offset

into this table, and the call-site of the function pointer includes

the expected type. The runtime looks up which funtion is

stored at the offset into the table, and verifies that the type of

the function matches that expected by the call-site. Only then

does the runtime perform the dynamic branch. If the signature

does not match, or there is not a valid address in the table

slot, a sandbox exception is generated.

Stack-based execution tracking. The other way the program

could violate control-flow integrity is through stack smashing

– that is, maliciously overwriting function return addresses on

the stack. The data stack, which is used to pass arguments and

do function-local allocations, is allocated in linear memory.

Corrupting this stack cannot violate control flow integrity –

the runtime does not trust it. We use the native execution stack

for executing sandboxed code. This stack is inaccessible from

within the sandbox, thus preventing the corruption of its return

addresses.

B. Memory Safety

To prevent Wasm code from accessing and potentially cor-

rupting memory outside of the sandbox, loads and stores must

only be performed in linear memory. The Wasm specification

gives no guidance on the mechanisms to be used for con-

straining or responding to illegal memory accesses. eWASM

explores four implementations for validating linear memory

accesses that make different trade-offs between isolation,

performance, memory usage, and standards conformance.

• No isolation. To establish a baseline, this does no safety

checks on loads or stores. To execute an instruction under

this model, the runtime simply adds the offset to the address

of the start of linear memory, then dereferences the address.

This does not provide memory safety, but is useful as a

baseline to separate eWASM overheads for linear memory

access checking, and the other mechanisms (e.g., those

required for CFI).

• Condition-based bounds-checking. This approach inserts a

naive bounds check on each load and store, based on the

size of linear memory. This provides memory safety, but

necessitates an extra branch every time data is loaded or

stored. This implementation is specification compliant. This

is a straightforward implementation of bounds checking

and is also used in [13].

• Masking-based sandboxing. To increase performance and

avoid branches, eWASM includes an implementation,

based on masking offsets into linear memory. On each

load and store, the runtime applies a bitmask to offsets to

ensure that they fall within the bounds of linear memory.

This has no effect on in-bounds accesses, but causes out

of bounds accesses to wrap around (using modulo arith-

metic). This approach generates branch-free code that is

faster than condition-based code. Unfortunately, an efficient

version of masking-based sandboxing requires power-of-

two sized linear memory, which can waste memory due to

internal fragmentation. This approach does not detect and

trap on accesses beyond linear memory, instead wrapping

within it. Due to this, it is not strictly Wasm standard-

conforming. Note, that languages such as C define out-

of-bounds accesses as undefined behavior, similar to this

masking approach. Regardless, masking maintains strong

isolation as linear memory accesses are still confined to

the sandbox.

• Software page-tables. The previous implementations have

the shortcoming that linear memory must be contiguous.

This is appropriate for many embedded systems where

maximum application memory consumption should be

known statically, but where dynamic allocation is neces-

sary, contiguous memory is restrictive as microcontrollers

do not provide address virtualization (i.e., they have a

MMU). Inspired by hardware MMUs, we design a soft-

ware page-table implementation. In this implementation,

all offsets are split into a n-bit page number and a 10-

bit page offset. The runtime maintains a single-level page-

table, tracking how pages are mapped to backing memory.

On access, it simply looks up the page corresponding to

the linear memory address, and then loads or stores from

there. If the access spans two pages, then the eWASM

runtime does two loads and reconstructs the final value.

This approach tends to be slow, but is extremely flexible.

It allows sandboxed programs to be given limited access to

arbitrary pieces of memory. As linear memory is expanded,

pages can be separately and non-contiguously allocated

with the RTOS’s malloc.

C. eWASM-based Process Abstraction

A primary benefit of using a software approach to provide

isolation is that it avoids requiring hardware support, and also

avoids interfering with the system outside of the sandbox.

Many microcontrollers do not have MPUs, thus must use

software means for isolation. When available, MPUs might





Listing 1: No protection

i16 get i16 (u32 offset ) :

; offset stored in r0

; char∗ address = &memory[offset];

movw r1 , #memory addr low

movt r1 , #memory addr high

; return ∗(i16 ∗) address;

ldrsh r0 , [r1 , r0] ; array access

bx lr

Listing 2: Conditional bounds checking

i16 get i16 (u32 offset ) :

; offset stored in r0

push {r4, r5 , r7 , lr}
sub sp , #40

; assert ( offset <= memory size − sizeof( i16 )) ;

movw r1 , #memory size addr low

movt r1 , #memory size addr high

ldr r1 , [r1] ; load memory size

subs r1 , #2

cmp r1 , r0 . ; do bounds check

bhs #40 <get i16+0x3e>

; [Fault handling logic omitted ...]

...
; char∗ address = &memory[offset];

movw r1 , #memory addr low

movt r1 , #memory addr high

; return ∗(i16 ∗) address;

ldrsh r0 , [r1 , r0] ; array access

add sp , #40

pop {r4, r5 , r7 , pc}

Listing 3: Wrapping

i16 get i16 (u32 offset ) :

; offset stored in r0

; return ∗(i16 ∗) &memory[offset % MEM SIZE];

movw r1 , #memory addr low

movt r1 , #memory addr high

bfc r0 , #18, #14.

ldrsh r0 , [r1 , r0] ; bitmask , array access

bx lr

define in the C runtime rather than emitting the corresponding

LLVM instructions. This enables an efficient interface to the

eWASM runtime, and allows us to easily update, validate,

and test different bounds checking implementations (see the

integration of bounds logic from the runtime into the assembly

in Figure 2). A focus of this paper is on the impact of

various bounds checking implementations, thus enabling the

configurable coupling of the runtime sandboxing logic into the

application logic is essential. We heavily rely on LLVM to

optimize the resulting code and inline the runtime operations,

thus removing any overhead of the separate functions.

Then we use LLVM/clang to combine this bytecode with

our runtime, written in C which defines the bounds checking

mechanism. We use LLVM’s link time optimization (LTO) to

ensure that these mechanisms are efficiently inlined into the

application. Once this process is done, we are left with a self-

contained, sandboxed object file ready for deployment onto

the target platform. Our infrastructure makes it easy to create

new pluggable functions, allowing custom communication

protocols to develop between the sandboxed code and code

outside of the sandbox. We use these to interface with the

RTOS The aWsm compiler is currently 3500 lines of code

written in Rust and is open source.

B. eWASM Sandboxing Runtime

The eWASM runtime consists of a number of functions that

are directly invoked from the Wasm sandbox. These include:

• linear memory accesses, that include the bounds-checking

logic,

• function pointer invocation indirection tables and type-

checking,

• the implementations of select system calls by pulling in a

modified musl libc for backwards compatibility, and

• service functions to expose the underlying RTOS’s func-

tionality, where appropriate (e.g., message passing based

communication, or APIs for accessing I/O devices).

We investigate different implementations of the bounds

checking mechanism for linear memory that in many cases

trade efficiency for memory consumption. For reference, List-

ing 1 shows the logic for doing a load of a 16-bit value from

linear memory. It offsets the address into the linear memory

(memory) using ldrsh to perform an array load. Note that

Arm inlines the address for memory into the code by splitting

it into its higher- and lower-order bits across instructions.

Similarly, the assembly in Figure 2 performs 8-bit loads using

comparable instructions.

As eWASM provides isolation of sandboxed execution,

the other bounds checking mechanisms ensure access is con-

strained to within linear memory. The straightforward con-

ditional checking mechanism is detailed in Listing 2. This

mechanism (1) compares the address (+ 16) to the maximum

linear memory size (memory size), (2) produces a sandbox

exception if the access is beyond the bounds, and (3) offsets

into memory. In contrast, Listing 3 elides the condition and

error handling code by simply wrapping the address within

a power-of-two, static sandbox size (i.e., by masking off the

higher order bits), and then offsets into memory.

The software page-table implementation is not shown here.

It uses a single-level page-table and a page size of 1kB. It must

check if a memory access crosses between page boundaries,

and splits it up the access across pages (later recombining

the memory), if necessary. Thus, this mechanism is relatively

complex, and generates a fair amount of code for each memory

access.

The eWASM runtime is 1200 lines of C code. The relative

simplicity of this runtime is important: it enables us to have

heightened confidence that the sandboxing of each application

is properly provided.

C. eWASM RTOS Integration

The sandboxed application object (ELF object) is linked

into the surrounding RTOS, and executed as a single thread

inside of it. This provides the temporal isolation provided

by the preemptive, priority-driven scheduling of FreeRTOS.

Message queues can link normal FreeRTOS tasks to the sand-

boxed application, and vice-versa. The runtime is activated

directly by function calls, so we avoid all mode switching

and hardware protection domain switching overheads (e.g.,

of writing to the MPU registers). Stronger temporal isolation

could be provided if FreeRTOS implemented rate-limiting

servers [25]. For this work, we focus on decoupling the



memory and control isolation from the RTOS implementation

to leverage the facilities it provides for temporal isolation.

D. Practical Considerations and Limitations

• Unaligned memory accesses. The Wasm specification does

not allow us to assume that loads and stores are aligned.

This means we must account for that, and make memory

operations and bounds checking mechanisms work with

unaligned addresses. A prototype version of eWASM –

that converted unaligned accesses to a set of aligned smaller

access – has large slowdowns, so eWASM currently relies

on activating unaligned accesses in the microcontroller

(supported by all but the smallest of Cortex-M processors).

• Statically-sized backing memory. With limited memory and

without virtual memory support, growing large contigu-

ous allocations is challenging. Thus, conditional bounds

checking and wrapping use a statically-sized allocation. In

contrast, software page-tables are exceptional in that they

do allow non-contiguous expansion of linear memory by

performing address virtualization in software.

• Read-only memory. Wasm does not differentiate between

read-only and read-write memory. This has a significant

impact on eWASM memory usage. Read-only memory can

be stored and directly accessed on flash in microcontrollers.

As the flash often is larger than SRAM, applications are

commonly designed to have large lookup tables in read-

only memory. eWASM must then copy that read-only

memory from flash into SRAM when constructing a sand-

box. This is sub-optimal because (1) read-only memory

consumes both SRAM and flash resources, and (2) SRAM

consumption can significantly increase. This is what we

feel is the single Wasm specification nuance that has the

most friction with embedded systems. In § VII, we discuss

a set of suggested extensions to Wasm for embedded

systems.

• Expanding linear memory. Dynamic allocation is a com-

mon requirement, and we implemented it in our modified

musl libc. Wasm specifies that the sandbox should expand

memory by 64KiB chunks, which is not granular enough

for constrained embedded systems. Thus, the libc malloc

requests heap expansions by making a system call to the

runtime, allowing it to allocate with 1KB granularity.

• Undefined behavior in C. Since our compiler pipeline

uses optimizations, undefined behavior in the underlying

C program can cause unexpected results. Some legacy C

programs with undefined behavior make assumptions about

the underlying machine that do not hold in Wasm. These

include assuming that specific addresses have semantic

meaning, or that different structs have the same bitwise

layout. In practice, eWASM caught undefined behavior in

several programs we tested, although none in the programs

we used for our final benchmarks.

• Stack overruns. The execution stack is outside of the

Wasm sandbox, thus stack overflows are a potential hazard.

We require the stack to be guarded with the MPU. The

shadow stack is in linear memory, so overruns due to, for

example, large stack-allocated data-structures, are protected

by the existing bounds checks. For embedded systems,

applications must often be profiled to ascertain stack usage.

eWASM applications are no exception, but insufficient

stack sizes will be detected and properly faulted.

• Libc replication. Libc is compiled into the code of each

sandbox. This provides strong protection as even the libc

code is sandboxed. Unfortunately, it also means that the

libc code is replicated in the sandboxes. This increases the

code-size for the sandboxed code, but we err on the side

of strong isolation.

VI. EVALUATION

Hardware and software configuration. We use

STM32F767ZIT6, a Cortex-M7 based microcontroller

for evaluation of eWASM. It runs at 216 MHz, has a 6-stage

pipline that is dual-issue, and has a dynamic branch predictor.

It has a 16k/16k I/D cache, 512kB SRAM, and 2MB Flash

with the ability to execute code directly from Flash (aided by

a prefetcher). We believe that the results from this evaluation

should generalize to other processors in the Cortex-M family.

We would expect that on systems without dynamic branch

prediction, the results for bounds checking will be worse.

All evaluations use the FreeRTOS V9.0.0 operating system.

The base system is compiled with GCC 8.2 using the Musl C

library. The interpreter we tested wasm3 [17] is built with this

toolchain as well. All benchmarks and applications are built

with Clang-LLVM, both WASM and C native. All graphs in

this section depict averaged measurements.

Benchmarks. The benchmark suite used in the original Wasm

paper is Polybench [26]. It has some relevance to embedded

systems: it includes common matrix operations and statistical

operations.

Applications. We use a number of applications to evaluate

eWASM. The applications we analyzed are:

• CMSIS-NN V1.0.0 (nn)- A neural network library designed

for microcontrollers that is used to perform image catego-

rization.

• Arduino PID library (pid) - A typical Proportional, Inte-

gral, Derivative controller used for physical control.

• TinyEKF Kalman filter (kalman)- Used for sensor fusion

and state estimation.

• TinyCrypt (crypto) - A small library of crypto primitives.

For CMSIS-NN, we do image recognition using a CIFAR-

10 configuration that has three convolution layers, then ReLU

activation and max pooling layers, finally followed by a fully-

connected layer. The input to the network is a 32x32 pixel

color image which is classified to one of ten categories.

For the Arduino PID library, we run the official ”Adaptive

Tunings” example. For TinyEKF Kalman filter, we use the

official Fuser benchmark. TinyCrypt is a crypto library for

resource constrained devices, and it is run with its own

standard benchmarking suite, with several tests that use too

much memory (for even the C code to run) elided.

A. Benchmark Evaluation

To investigate the overheads of different WASM bounds-

checking methods and the architectural effects to these over-



heads, we leverage the Polybench benchmark suite which is

commonly used in Cortex-M performance profiling. We eval-

uate both the execution efficiency and the memory footprint

of WASM binaries against their native counterparts.

Execution efficiency. We first evaluate the execution efficiency

of the benchmarks. We ran each Polybench benchmark for

10000 times, and registered their total running time for all four

bounds-checking methods. We followed the same procedure

for the native C code. Figure 3 plots the results. All execution

times are normalized to native code. We run these tests and

report the results in a manner consistent with the evaluation

in [16].

Discussion. We see that the execution time of all WASM

binaries are higher than that of the directly compiled native

binaries (native). The “no bounds checking” (none) Wasm

binaries lack any security properties but are almost as fast as

native in some benchmarks. The “wrapping bounds check-

ing” (wrapping) mode offers security and those binaries are

only 1.5x slower than native, however this mode is not

fully standards compliant. The “conditional bounds checking”

(cond) mode is 2x slower than native but uses standard

compliant bounds-checking. If the system needs to run WASM

on non-contiguous memory blocks, “software page table”

(swpgt) is required; this approach is even 2x slower than

cond but does not require the linear memory to be contiguous.

For most embedded systems, wrapping can be applied to

maintain security while close to native performance, shrinking

the bounds checking overheads.

Memory consumption. We evaluate the memory footprint of

all benchmarks. The (read-write) RAM and ROM usage is

obtained by static analysis of the generated binaries before

they are loaded into FreeRTOS. The dynamic RAM usage

is detected with hooks to malloc and free. Figure 4 shows

the ROM usage of the Wasm binaries in flash, compared with

native C, while Figure 5 shows the RAM consumption.

Discussion. The ROM consumption for Polybench is fairly

consistent across all benchmarks. Most benchmark code is

small, and the main contributor to the ROM size is the

Polybench library. We expect that ROM consumption will

increase in eWASM due to three reasons: (1) The bounds

checking and function pointer indirection mechanisms provide

sandboxing, but require additional code to be generated for

the checks. (2) Additionally, libc is compiled in with each

Wasm object including copies of the functions used by the

applications. (3) Last, initialization data for the linear memory

and function lookup table are stored in ROM, consuming

around 32kB. Due to these factors, we notice in Figure 4 that

the code ROM size bloats for none, wrapping and cond, and

results in around a 4x increase in ROM consumption over C.

The difference in memory consumption between no bounds

checking, and the other eWASM approach is due entirely to

the increased code size due to memory safety. The main outlier

here is the software page-tables. The inlined software page-

table walking code causes significant increases in the binary’s

code.

As discussed in §V-D, the Wasm standard does not differen-

tiate read-only and read-write memory. This means that what

would be ROM (and placed in flash) in C, must be copied

into the initial image of the linear memory in Wasm. Thus, the

ROM is represented in both ROM and RAM measurements.

This effect is particularly pronounced in benchmarks like

jacobi-1d that include very little read-write memory.

eWASM’s additional RAM consumption is due to runtime

structures including the shadow stack, and the function lookup

table. Though the shadow stack could be tweaked to be no

larger than a specific application requires, we allocate it a

constant 32kB. We do not report the execution stack RAM

consumption (which is larger for C as it is used for stack

allocations).

RAM consumption for wrapping is higher than the other

bounds checking approaches as the linear memory must be

statically sized to be the next higher power-of-two over the

maximum heap usage. This leads to a maximum 100% RAM

linear memory wastage (and 50% on average) due to internal

fragmentation. It should be noted that industry practice is to

often pad application memory for future firmware or applica-

tion updates.

Note that we under-estimate the RAM consumption for

native C in two ways: (1) We do not measure memory re-

quirements for the runtime execution stack. eWASM generally

needs less memory for this as local allocations that can be

referenced are allocated in the shadow stack in linear memory

instead of on the runtime stack. In practice, this means that

stack allocations in C are not counted in these numbers,

and appear in linear memory RAM (and ROM) consump-

tion in eWASM. (2) We measure all memory committed to

linear memory in eWASM. In native C, we only record the

maximum of all active malloc requests. This means we do

not measure RAM consumption for malloc meta-data (e.g.

headers), nor internal or external fragmentation. Thus, our

comparisons with eWASM favor C.

B. Low-end Evaluation with M4

We re-run Polybench using eWASM on a Nordic

nRF52840, which is a Cortex-M4F, with 1MiB Flash and

256KiB SRAM. We ran without floating point enabled (thus

using emulation) to emulate an M3 without the floating point

support, that Wasm assumes. The code and SRAM consump-

tion are close to the results for the M7, thus we omit them here.

We execute each benchmark 100 times, and observe deviation

from the average for each run of less than our measurement

resolution (±1 nanosecond).

The average slowdown of the code over native C:

Microcontroller none wrapping cond swpgt

Cortex-M7 (from Fig.3) 1.238 1.402 1.675 3.964

Cortex-M4 1.227 1.249 1.519 1.628

Discussion. As floating point emulation is used, the relative

cost of different memory sandboxing approaches is smaller

than on the M7. Regardless, the results show that even

for hardware that does not support features of Wasm (e.g.,

floating point), performance of the various memory protection

mechanisms is consistent and reasonable.
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Fig. 3: Polybench benchmark execution time for different bounds-checking methods. The horizontal axis is the different benchmarks, while
the vertical axis is the execution time, normalized to C.
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Fig. 4: Polybench benchmark ROM footprints for different bounds-checking methods. The horizontal axis is the different benchmarks,
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Fig. 5: Polybench benchmark RAM footprints for different bounds-checking methods. The horizontal axis is the different benchmarks,
while the vertical axis is the memory size.

C. Application Evaluation

In this section, we present real-world application evaluations

using the four applications detailed above, nn, pid, kalman

and crypto. We measure both the application’s running time

as a metric of execution efficiency and memory footprint.

Execution efficiency. We first evaluate the execution efficiency

of the applications under all four bounds checking methods

and compare this with that of native C binaries directly

compiled from C source. We report the execution for a single

run of crypto, and the average of 1000 runs for the other

applications.

Discussion. For all four applications, we can see that native

binaries are faster than WASM binaries. This is expected due

to bounds checking and shadow stack maintenance. Even none

is slower as it must translate addresses into linear memory.

As with Polybench results, none is faster than wrapping,

wrapping is faster cond, and swpgt is still the slowest. For all

applications, the running time of wrapping and cond is within

between 1.5x and 3x when compared to native binaries, and the

running time of swpgt is with in 6x. Even the software page-

tables are significantly faster than an interpreter (see §VI-D).

Memory consumption. We then evaluate the memory foot-

print of all applications. The code ROM size and the RAM

size are obtained as in the Polybench results and depicted in

Figures 7 and 8, respectively.

Discussion. The none and wrapping mechanisms maintain

ROM sizes within a factor of four of C. The same is generally

true of cond, while kalman is an outlier at around 10x.

As with Polybench, the page-table approach results in very

large binaries due to the per-memory access paging logic.

The same logic around increased memory consumption for

eWASM sandboxes as introduced for Polybench is true here,

and the same trends present themselves. The software page-

table mechanism vastly expands ROM consumption, while
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wrapping remains with a factor of 4x in ROM consumption.

The RAM consumption is dominated by pages statically-

allocated for use as linear memory.

D. Comparison to Interpreter

Interpreted execution environments are common on IoT

devices. We selected wasm3 as a well established interpreter

for Wasm on the Cortex-M, with a reputation for strong

performance. To assess the properties of the wasm3 interpreter,

we ran our four ”real-world” application benchmarks on it.

wasm3 struggles to run crypto, taking more than two hours

to complete a single run, thus we judge it to have timed

out. pid is run for 100 rounds and the other two application

benchmarks are run for 10 rounds given their long runtimes.

We present the normalized running time (exec) and

ROM/RAM usage (rom and ram) of those applications, for

both wasm3 and eWASM (wrapping).

App wasm3 ewasm

exec rom ram exec rom ram

nn 67.11 254.4KiB 176.8KiB 2.56 385KiB 136KiB

pid 30.17 94.4KiB 148.8KiB 1.26 35.6KiB 136KiB

kalman 26.43 96.4KiB 167.4KiB 1.78 80.2KiB 136KiB

crypto timeout 363.4KiB timeout 1.33 486KiB 264KiB

TABLE I: The wasm3 interpreter versus eWASM wrapping.

Discussion. For these applications, interpreter performance is

more than an order of magnitude worse than that of native

code. The design of wasm3 necessitates using RAM to store

the intermediate representation it uses to achieve relatively fast

interpretation. The interpreter itself is complex and large which

leads to significant ROM usage. This culminates in RAM and

ROM usage that is larger by an order of magnitude than native.

eWASM performs better than wasm3 for all bounds checking

mechanisms. Notably, wrapping executes at least an order of

magnitude faster that wasm3 on all the benchmarks we tested.

eWASM’s memory usage is also superior to wasm3, even in

the relatively RAM hungry wrapping mode.

Conclusions. The different memory sandboxing approaches

represent different trade-offs in time and space, which we will

summarize here. Wrapping-based approaches have the best

performance (within 40% of C on Polybench), has the lowest

ROM usage of any isolation approach, but requires significant

RAM consumption due to the power-of-two size requirement.

Conditional-based bounds checking increase the ROM size due

to the overhead of error paths, and decreases performance

compared to wrapping. However, its RAM consumption is

relatively tight to that required by the application, increasing

in 1kB increments as the heap is expanded. Software page-

tables impose significant overheads in terms of performance

(though still significantly less overhead than the interpreter),

and in ROM usage (due to inlined page-table translation

code). However, it shares the RAM efficiency of condition-

based checking, and is unique in that it performs address

virtualization. Thus linear memory can be non-contiguously

allocated. This is useful if an application has unknown maxi-

mum memory requirements. We show that all approaches have

a significant limitation which is a side effect of the Wasm

specification: read-only memory must be allocated in linear

memory, thus read-write RAM.

VII. LESSONS LEARNED AND RECOMMENDATION FOR

WASM STANDARDS

Configurations of eWASM that perform best on micro-

controllers are not compliant with the Wasm standard. They

maintain sandboxing, but do so by loosening some of the

guarantees provided by the standard. This section discusses

the specific ways the standard either leads to inefficiencies

on microcontrollers, and argues for an embedded variant of

the Wasm standard. Note, that all suggestions maintain strong

sandboxing properties.

• Page-size, and initial memory allocation. The Wasm page

size is 64KiB. This was chosen as the least common

multiple of common hardware page sizes. On embedded

systems, especially microcontrollers, a 64KiB page a major

limitation. On many M series microcontrollers, there is be-

tween around 16 and 128KiB of usable read-write memory.

Our implementation departs from the standard by allowing

byte-granularity, 1 KiB page-granularity, or static allocation

of linear memory for conditional, software page-table, or

wrapping bounds checks. The initial image of the linear

memory would normally be placed in a single 64KiB page,

but we instead size the initial allocation to the actually

required memory. To optimize for memory, we recommend

that a Wasm embedded variant allow expanding memory by

a significantly smaller granularity, both in the initial linear

memory and for dynamic allocations.



• No separate allocation of read-only memory. As touched

on in the previous section, all Wasm linear memory is read-

write. On embedded systems, it is common to have large

read only data, such as lookup tables, and to store them

in the, often larger, flash memory. The Wasm specification

does not provide facilities for separate, read-only memory.

Thus, our implementation copies read-only data into the

linear memory, causing significant SRAM consumption.

• Exceptions on Out of Bounds (OOB) accesses. The Wasm

specification requires that a load to a linear memory address

greater than the current size of linear memory should fault.

A naive approach to this is bounds checking, but as we have

shown, this has overhead, especially on embedded systems

with limited branch prediction.

We have shown the benefit of a wrapping-based approach

to sandbox memory accesses. This behavior is not specifi-

cation conforming, but does give a significant speedup.

We recommend that a specialized embedded Wasm spec-

ification optionally allow undefined behavior of memory

accesses outside of the sandbox, so that the runtime can

use wraparound to efficient provide sandboxing.

Failed design: MPU-assistance. We attempted a co-design

of the linear memory OOB checking using the hardware

Memory-Protection Unit (MPU). We could not make this

work. In retrospect, it is clear to see why we would inevitably

fail. There is a conflict between the goals: (a) generated code

needs fast access to the execution stack and the linear memory,

and (b) code in the sandbox must not be able to access the

execution stack. A single static MPU configuration cannot

accommodate this, so fine-grained switching, potentially on

each access to the execution stack, would be necessary. The

overhead of this [3] led to us abandoning attempts to use the

MPU.

VIII. CONCLUSIONS

This paper introduces eWASM that provides a software

sandbox with temporal and spatial isolation for legacy code

on resource constrained microcontrollers. eWASM consists of

an ahead-of-time compiler, aWsm, and a runtime to safely

execute even typically unrestricted code such C in what we

believe is the first compiled, sandboxed environment for mi-

crocontrollers. We compare various mechanisms for ensuring

that sandboxed code cannot access memory outside of the

sandbox, and find that they all represent interesting time/space

trade-offs. Though eWASM shows performance within 40% of

C, we also find that the Wasm specification has a few friction

points with an effective microcontroller implementation. We

make specific recommendations that might further increase

the capabilities of strong sandboxing in resource-constrained

devices.

The eWASM and aWsm source is publicly available at

www.github.com/gwsystems/awsm/.
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