
MxU: Towards Predictable, Flexible, and Efficient
Memory Access Control for the Secure IoT

Runyu Pan
The George Washington University

panrunyu@gwu.edu

Gabriel Parmer
The George Washington University

gparmer@gwu.edu

ABSTRACT
The advanced functionality requirements of modern embedded and
Internet of Things (IoT) devices – from autonomous vehicles, to
city and power-grid management – are driving an ever-increasing
software complexity. At the same time, the pervasive internet con-
nections of these systems necessitate the fundamental design of
security into these devices. The isolation of complex features from
those that are critical through protection domains is an effective
means to constrain the scope of faults and security breaches. Com-
mon hardware-provided memory facilities to enforce protection
domains through memory access control – including Memory Man-
agement Units (MMUs) usually found in microprocessors, andMem-
ory Protection Units (MPUs) usually found in microcontrollers –
must meet the goals of enabling flexible, efficient and dynamic man-
agement of memory, and must enable tight bounds on the worst-case
execution of critical code. Unfortunately, current system memory
management facilities are ill-prepared to handle this challenge:
MMUs that use extensive caches to achieve strong average-case
performance suffer from debilitating worst-case and even average-
case behavior under hefty interference, while MPUs struggle to
provide flexible memory management.

This paper details MxU, a memory protection and allocation
abstraction that integrates temporal specifications into the memory
management subsystem, to enable portable code to achieve both
predictable, tightly-bounded execution and dynamic management
across both MMU- and MPU-based systems. We implementMxU
in the Composite microkernel, and evaluate its flexibility and pre-
dictability over two different architectures: aMPU-based Cortex-M7
microcontroller and a MMU-based Cortex-A9 microprocessor us-
ing a suite of modern applications including neural network-based
inference, SQLite, and a javascript runtime.

For MMU-based systems, MxU reduces application TLB stall
by up to 68.0%. For MPU-based systems,MxU enables flexible dy-
namic memory management often with application overheads of
1%, increasing to 6.1% under significant interference.

ACM Reference Format:
Runyu Pan and Gabriel Parmer. 2022. MxU: Towards Predictable, Flexible,
and Efficient Memory Access Control for the Secure IoT. In Proceedings of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EMSOFT ’19, October 13 2019, New York
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

EMSOFT 2019 (EMSOFT ’19). ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The common denominator of Industry 4.0, the Internet of Things
(IoT), and “smart” infrastructure is the ubiquitous connection of
embedded systems to the network. This promises new levels of co-
ordination, orchestration, situational awareness, and environment
analyzability. At the same time, we’re moving increasing function-
ality to embedded devices, which pushes these systems beyond the
simplicity of traditional embedded systems. This is often driven by
Size, Weight, (Cost), and Power (SWaP) constraints that encourage
consolidation of many functions onto a single system. Applica-
tions requiring increased feature sets include Machine Learning
(ML), embedded virtualization, and blockchain, which are often
scaled-down versions of their general-purpose variants.

Unfortunately, a network connection exposes devices to mali-
cious actors. The ever-increasing complexity of embedded-systems
driven by the addition of low-assurance code, necessitate a deep
and pervasive focus on both security and reliability. Though we
cannot practically ensure that all code is free of bugs, we can ensure
that different system functionalities are mutually isolated in time
and space so as to limit the impact of their failure or compromise.
Hardware memory isolation mechanisms are wide-spread, includ-
ing the microprocessor Memory Management Units (MMUs) and
microcontroller Memory Protection Units (MPUs). They focus on
constraining the scope of each application’s accessible memory,
thus providing memory access control.

Unfortunately, MMUs and MPUs are ill-prepared to provide both
the flexibility necessary for dynamic, feature-rich applications, and
the predictability necessary for embedded systems. MMU-based
systems use the page-based memory mapping facilities to control
application address spaces. They use a memory-defined page-table
representation paired with a pipeline-integrated Translation Looka-
side Buffer (the TLB) cache to define the subset of memory ac-
cessible by the application. MMUs exhibit significant variance in
memory access latency as access control decisions access memory-
based page tables. A load or store to a application data in L1 cache
(often < 10 cycles) can exhibit multiple 100s of cycles if the corre-
sponding page-table is not in cache. On the other hand, MPU-based
systems provide protection of only a small, limited number of mem-
ory ranges. This can easily prevent their use with feature-rich
applications that use heap-based, dynamic memory allocations, and
shared memory.

To provide the security and reliability constraints required by
modern embedded systems, while ensuring both tight Worst-Case

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

MEM MEM

RM

RMDS
MEM

RM

RMDS

Real-time accesses Best-effort accesses

CPU CPU CPU

Figure 1: CPU accesses tomemory, and thememory access control resource
monitor (RM). The left system has no protection, center uses the RM which
must access its own data-structures (RMDS) in memory (dashed lines) which
increase the latency of some accesses. The right system is MxU which inte-
grates temporal specifications into memory allocation to enable tight execu-
tion bounds for critical applications.

Execution Time (WCET) bounds and good average-case perfor-
mance, this paper introduces MxU. MxU integrates temporal speci-
fications into the memory allocation facilities, and ensures that they
map down to hardware mechanisms to provide the corresponding
behavior (see Figure 1). Additionally,MxU enables the necessary
dynamic memory management for complex applications even on
constrained microcontrollers.MxU provides a unified API that con-
trols the otherwise loose WCET bounds from MMU systems, and
makesMPU systemsmore dynamic and flexible. We believe this will
enable the strong security that modern embedded systems require,
while providing both more practical predictability and flexibility.
Contributions.We begin with a background on MMUs and MPUs
(§2), then focus on this paper’s contributions:
• we introduce the design of MxU (§3) and its integration of
temporal constraints into the OS’s handling of MMUs (§3.4) and
MPUs (§3.5);

• a prototype implementation of MxU in the Composite micro-
kernel in as a system-wide memory manager (§4);

• an evaluation of theMxU prototype to understand the funda-
mental predictability and efficiency properties of the system’s
operations (§5); and

• a thorough evaluation of MxU’s use with applications focusing
on data-management, processing, and machine-learning (§5.3).

2 MEMORY PROTECTION MECHANISM
BACKGROUND

To further understand the challenges in achieving predictability and
flexibility with MMUs and MPUs while providing strong memory
protection, we review the hardware organization of each in detail.

2.1 Memory Management Units
MMUs provide flexible memory access control facilities by enabling
page-granularity memory protection and allocation. Different ap-
plications are given different subsets of system memory, thus pro-
viding OS-controlled memory isolation. Application’s accessible
memory is expanded and contracted on a page-granularity only
limited by the size of the address space, thus enabling flexibility in
allocation. MMUs enable applications to execute in overlapping ad-
dress spaces using the virtualization of addresses. This is achieved
by controlling the mapping of the virtual addresses that are exposed
to applications, to the backing physical memory. This enables ease

of dynamic memory allocation as non-contiguous physical memory
can be used for single, contiguous virtual allocations.

The implementation of MMUs has a significant impact on the
performance and WCETs of task execution. To provide efficient
resolution ofmemory access permissions, MMUsmust be integrated
into the processor pipeline. To achieve efficient pipeline integration
and flexibility in mapping a large number of pages, a typical MMU
includes a TLB cache of virtual to physical translations, and the
hardware logic for walking a page table data structure (though
software-driven page table walkers exist, they are less common).
When a memory access is issued (e.g. a load or store) to a virtual
address, the MMU finds a translation for the address in its TLB. If
such a translation is not found, the in-memory page table is walked
to find a translation.

Unfortunately, MMUs impact the average-case performance of
applications and their ability to execute within tight WCET bounds.
The latency of the access control decision has significant jitter de-
pending on if it hits in the TLB, or it walks the page-table. The latter
involves multiple memory accesses for each level in the page-table,
thus significantly increasing memory access jitter. On processors
that are heavily dependent on the efficiency of their caches, this
overhead is in the thousands of cycles [18]. The memory access
pattern of an application alone is not sufficient to understand cache
behavior, as the MMU’s state must also be considered. This is chal-
lenging as TLB eviction policies are often opaque and unpredictable
(often explicitly based on random replacement or pseudo-least re-
cently used – P-LRU). To avoid these challenges, many embedded
systems choose to forego isolation, and use a single identity mapped
address space (where all virtual and physical memory are identical)
consisting of very large superpages.

To make things worse, the MMU’s TLB is shared among multiple
applications. When switching between applications, TLB entries
are transient and are not explicitly saved and restored as part of the
context switch. As such, the TLB must be flushed to prevent the
previous application’s mappings from being accessed from the next.
This causes TLB misses when switching back to an application,
further harming the performance and forcing pessimistic WCET
estimates to maintain predictability. Alternatively, many modern
processes maintain tagged-TLBs, in which each application, and
each TLB entry is associated with an Address Space ID (ASID). Only
entries with the current application’s ASID provide valid transla-
tions, thus providing access control within the TLB. This enables
the avoidance of flushes on context switches, but the worst-case
impact still exists if another application with a large working set
evicts an application’s entries. As such, inter-application interference
in shared TLB caches forces pessimistic assumptions about full TLB
eviction on context switch, thus significantly inflating the WCET. If
this interference is strong and persistent, the average-case perfor-
mance can be adversely affected as well. This interference in a fixed-
priority system is on the order of𝑀 ×𝐿×𝑆 ×∑

𝑝ℎ ∈ℎ𝑖𝑔ℎ𝑒𝑟 (𝑖) ⌈𝑝𝑖/𝑝ℎ⌉
for task 𝜏𝑖 where ℎ𝑖𝑔ℎ𝑒𝑟 (𝑖) is all higher-priority tasks, 𝑀 is the
worst-case memory access time, 𝐿 is the number of levels in the
page table, and 𝑆 is the minimum of the TLB residency and number
of TLB entries.

2.2 Memory Protection Units
MPUs provide a limited form of memory access control, and are
typically found in smaller microcontrollers. They use a register-
based design in which specific entries are directly retrieved and
programmed. Each entry contains an address range and access per-
missions (e.g. read, write, execute), and enables the corresponding
accesses only to those addresses. If the access is out of the desig-
nated range, or violates the access permissions, an exception will
be delivered to the kernel.

The MPU registers are directly saved and loaded by the operat-
ing system, thus the contents are explicit, and accesses to address
ranges are always deterministic and predictable (validated by, or
in violation of, the MPU entries). Memory access control checks
never make extra memory accesses. This leads to tighter WCET
bounds, thus a high-degree of predictability of memory accesses
as access control decisions are made using on-chip registers. Due
to the explicit programmability and visibility of the MPU registers,
they can be saved and restored with other thread registers. This
completely mitigates inter-application interference at the cost of
increased context switch times.

Unfortunately, several properties of MPUs limit their flexibility,
especially for systems with dynamic memory requirements. The
number of MPU entries is bounded, and often quite small (between
4 and 32), and the size of the address range for each entry is con-
strained (often to be a power-of-2, and aligned on that boundary).
Additionally, common MPUs do not map virtual addresses to phys-
ical addresses, which implies that contiguous memory is required
for allocations. This leads to many MPU-based systems completely
forbidding dynamic memory allocation from global memory. Some
MPU implementations do allow region-based virtual address to
physical address translation, which eases global allocation, but
they are still constrained by the limited and small number of MPU
regions.

Infrastructure Dyn. Alloc Flexibility Tight WCET No Interf.
MMU only ✓ ✓ ✗ ✗

w/ASID ✓ ✓ ✗ ✗

MPU only ✗ ✗ ✓ ✓

w/virt ✓ ✗ ✓ ✓

MxU ✓∗ ✓ ✓ ✓

Table 1: Memory access properties for different memory access-
control hardware mechanisms. ∗ is clarified below.

2.3 MMU and MPU Summary
Current MMU-based embedded systems either avoid the unpre-
dictability of memory accesses by offloading real-time computations
to microcontrollers, or accept the pessimistic bounds necessary to
accommodate uncontrolled TLBmisses. In contrast, MPU-based sys-
tems often offload more complex computations with complex mem-
ory usage to MMU-based systems. This draws a false-dichotomy
between these systems, even though many MPU-based systems are
just as computationally capable as their MMU counterparts (e.g.
Cortex-M7 and Cortex-A9).

Table 1 summarizes some of the key dimensions differentiating
MMU and MPU variants, and clarifies the goals of MxU. MxU
aims to provide a uniform abstraction for memory access control

that provides tight WCET bounds, flexibility, dynamic, system-
widememory allocation, and controls inter-application interference.
MxU extends the memory allocation interfaces to enable dynamic,
system-wide memory management. However if hardware doesn’t
support address virtualization, it is limited by the availability of
contiguous ranges of memory.

3 MXU DESIGN FOR FLEXIBILITY AND
PREDICTABILITY

3.1 MxU Abstraction
MxU is a high-level abstraction that integrates temporal specifica-
tions into flexible memory management facilities, and maps them
down to the memory access control hardware. This is motivated
by the strong security and reliability requirements of modern em-
bedded systems. MxU increases both the tightness of worst-case
bounds for and the flexibility of protection domains, thus enabling
the liberal use of hardware-provided isolation to limit the scope
of faults and compromises. Average-case performance is also im-
proved for cases where heavy interference persists.

MxU integrates newmechanisms into the core hardware-software
co-design of memory protection facilities, and guides them by
adding an abstraction layer on top that integrates temporal specifi-
cations. The hardware mechanisms for memory access control in-
tegrate in-pipeline, efficient and predictable structures (e.g. CAMs),
with in-memory data-structures to track broader state. MMUs use
page tables as a medium for coordination between hardware and
OS, and MPUs use explicit region registers loaded from OS-defined
data-structures. Each memory access that must go out to the access
control, in-memory data-structures incurs the significant overhead
and latency spikes from additional memory accesses (that may
miss the cache in the worst-case). This causes significant memory
accesses jitter compared to solely on-chip accesses.

On-chip caches are used to increase the efficiency of memory
accesses, and embedded chips often enable limited control over
cache contents. MxU’s focus is to control the latency of memory
access control decisions by controlling cache contents at all levels:
are necessary entries in pipeline-integrated caches (TLB, or MPU
region), in L1/L2/L3, or in memory? This increased control enables
the latency of memory access control decisions to be bounded and
significantly tighter than the existing worst-case of having to access
off-chip memory.MxU uses a uniform data-structure representation
for memory access control, and through the temporal specification
used for memory allocation, ensures that the required access control
decisions are bounded by cache accesses at a specified level.

3.2 Guarantees and Aims
TheMxU abstractionsmakes a number of guarantees uponwhich se-
cure embedded systems can be built. Unfortunately, the limitations
of hardware prevent some desirable properties, thus we include a
number of aims that are satisfied on a subset of MxU’s hardware.
MxU guarantees:
G1: Integration of temporal properties into memory man-
agement. All memory allocation operations are parameterized
by a temporal specification which corresponds to the level of
the storage hierarchy at which memory access control decisions

are guaranteed to be made. This enables applications to limit
the access control’s increase in memory access latencies.

G2: Admission control for memory access timeliness. An al-
location is successful if and only if the hardware is capable of
allocating such memory with the appropriate access latency
guarantees. This should enable static guarantees in cases where
all allocations are known a-priori.

G3: Flexibility of allocations. The number and size of alloca-
tions is not constrained by specific hardware implementations,
and is only constrained by available memory.

G4: Portable abstraction. The MxU abstraction and program-
ming interfaces is uniform, and shared across MMU and MPU-
based systems, thus enabling portable embedded system imple-
mentations.

G5: Memory protection and controlled sharing. To create se-
cure embedded systems, protection domains must enable access
to disjoint sets of memory with the controlled exception of the
shared memory API. Shared memory also requires agreement
on the temporal specifications for that memory.

MxU aims:
A1: Fully deterministic accesses. If the hardware providesmeans
to control lookups in in-pipeline structures, then specific regions
are accessed with determinism.

A2: Controlled interference between protection domains. If
the hardware allows efficient direct programming of and visibil-
ity into memory access control state, interference in between
lookups for different protection domains is eliminated.

A3: Address virtualization. If the hardware can translate virtual
addresses to physical addresses, MxU harnesses this feature,
thus enabling non-contiguous physical memory to satisfy single
allocations.

3.3 API Design

Operation Description
rt_malloc(sz, ts) Allocate memory with a given temporal

specification (ts).
rt_malloc_at(addr, sz, ts) Similar, but allocate at a specific address.
rt_shmget(id, sz, align, ts) Allocate shared memory associated with

an id.

Table 2: The main functions in theMxU API.

MxU aims to extend conventional APIs, enabling it to slot in to
existing software ecosystems easily. Table 2 shows the most notable
functions in the API. They all focus on dynamically allocating mem-
ory and associating it with some temporal specification. Note that
this API is more flexible than those exposed for most MPU-based
systems that are architecture-specific and explicitly program the
protection registers. Though the API is similar to typical POSIX
interfaces, rt_malloc_at can be used by the lower-level OS com-
ponents which allocate and map application’s code and data to
control the timing properties of even applications that require only
static allocation. Legacy APIs are supported by fixing the temporal
specification for all of an application’s allocations.
MxU temporal specification. This specification includes a num-
ber of flags: (1) MXU_DETERMINISTIC to require that access control

checks for this memorymust be deterministic, and use only pipeline-
integrated (sub-cycle latency) hardware, (2) MXU_L𝑥 requires that
access control checks never touchmemory going beyond the level-𝑥
cache, and (3) MXU_INDEPENDENT to signify that inter-application
interference must be prevented, thus enabling the application to
be analyzed independently. The temporal specification focuses ex-
plicitly on cache behaviors, rather than on latency or time values.
The application’s timing behavior is a composition of its execution
and memory access properties, and the additional delays due to the
memory access control checks. This API gives guarantees for the
latter, so that a timing analysis of the application (beyond the scope
of this paper) can bound interference from memory access control.

3.4 Design for MMU-based Systems
MMU-based systems use virtual memory (A3) to support dynamic,
often physically non-contiguous, allocation (G3). The MxU design
for MMU-based systems exploits hardware features such as TLB
lockdown, on-chip memory, and cache layouts for coloring, to
lower the worst-case MMU access control bounds. Unlike other
past work that use such features to control application data [1,
8, 11, 12, 14, 18, 24, 25], MxU focuses on controlling placement
of access control data-structures as these are checked for every
memory operation, thus can have a disproportionately large impact
on worst-case execution time.MxU leverages hardware features,
where available, to explicitly place page-table nodes at the cache-
levels of the temporal specification (G1), or returns failure if those
features aren’t available, or are expended due to other previous
requests (G2).

Deterministic memory accesses (with zero overhead from access
control operations) are supported only in those chips where TLB
lockdown or coloring [18] are possible (A1). Perhaps most difficult
to support with MMUs is the controlled interference between pro-
tection domains (A2). As the TLB’s contents are not OS-controlled,
even ASIDs do not prevent a protection domain’s contents from
being flushed (by capacity evictions). Regardless, MxU supports
ASIDs to improve average, if not worst-case, performance.

3.5 Design for MPU-based Systems
Given the explicit programmability of MPUs, MxU has complete
control over the MPU’s contents (G1 and A1), and tracks if it runs
out of regions (G2). Unlike existing systems, the regions are saved
for each application along with their registers, thus providing com-
plete inter-application independence (A2). To increase the flexibility
of allocations, theMxU design for MPU-based systems takes advan-
tage of the software MPU exception handler to virtually extend the
number of regions (G3). When access is made outside of an allowed
MPU region, the CPU triggers an OS exception that can load in new
MPU regions on-demand. Thus, much like page-tables,MxU uses
a set of in-memory data-structures from which to retrieve valid
MPU regions. For these, the same optimizations around placement
are relevant, as is hardware support for controlling cache contents.
Only a relatively limited number of microcontrollers have MPUs
that support address mapping virtualization (A3).

4 MXU IMPLEMENTATION
4.1 MxU-enabled Composite Kernel
We implement MxU in the Composite [23] microkernel that has
strong security based on capability-based access control. All sys-
tem resources including threads, communication end-points, and
protection domains, are only referenced through unforgeable to-
kens called capabilities, which are delegated in a controlled manner
between user-level components (Composite’s protection domains).
Authorized protection domains boot up with full access to sys-
tem resources, and they delegate capabilities to those resources
to others in accordance with their policies. These “management”
components minimally include the system scheduler (there is no
in-kernel scheduler [7]), and the memory and I/O managers.

MxU is implemented as the system’s memory manager compo-
nent. Application components use synchronous invocations (the
highly-optimized, component-equivalent of IPC) to request mem-
ory services. Semantically, these invocations take the form of func-
tion calls to the API in §3.3. The MxU memory manager then uses
the kernel system call operations to modify the client’s protection
domain (e.g. add or remove memory access).

In the style of seL4 [4], Composite requires user-level compo-
nents to manage kernel memory using a safe form of memory
retyping. Even the construction of memory access control data-
structures (e.g. page tables) is carefully performed by components
with proper access to resources, and the ability to retype memory to
be the appropriate memory type. This allows the memory manager
to define the policy to control the physical addresses of kernel data-
structures such as page tables (within the bounds of what resources
it has capabilities to). A crucial guarantee that the kernel ensures
(independent of any component’s logic) is that memory that has
been typed as kernel (i.e. that backs kernel data-structures) can-
not also be typed as user memory (thus accessible to components)
– this has the effect of ensuring the consistency of kernel data-
structures. Pan et al. [17] introduced the use of the space-efficient
Path-Compressed Radix Trie (PCTrie) data-structure to program
MPU regions.MxU uses PCTries as the uniform data-structure to
describe both MMU and MPU systems (page tables are a specific
configuration of PCTries).

MxU expands the kernel API to provide operations on PCTrie
nodes that mimic the temporal specifications in §3.3. Specific PCTrie
nodes optionally have cache locality specifications when created,
which the kernel uses to place them appropriately using whatever
hardware mechanisms are available. TheMxU memory manager
tracks how much hardware (e.g. cache ways, TLB entries, MPU
regions) has been allocated for existing resources, and performs
admission control on these limited resources for new requests.
Though the kernel provides the facilities for manipulating processor
resources, the memory manager is given a hardware capability
allowing the caches of various levels to be manipulated. All these
features are orchestrated by the memory manager to provide MxU
services across MMU-based and MPU-based architectures, which
satisfies G1, G4 and G5.

Though the Composite system has a number of benefits that
eased the development of MxU including the explicit layout con-
trol of kernel data-structures, fast IPC and user-level definition of

MxU policies, and existing support for portable access control data-
structures between MPUs and MMUs, comparable modifications
could be made in other existing systems such as Linux.

4.2 MMU-basedMxU
On MMU-based systems, the core idea is to lower worst-case mem-
ory access latencies (G1). To make sure that memory access deci-
sions are made in the worst-case at a certain cache level, page table
nodesmust be stored in the corresponding cache-level. This requires
the utilization of relatively common hardware features and char-
acteristics to control cache contents [15] including coloring [18],
way locking, and pinning. In our current implementation, we are
using the XC7Z020-1CLG400I, which features an ARM Cortex-A9
dual-core processor, but only one core is used.

Item Description
Speed 767MHz, 2.5 DMIPS/MHz
MMU 4k page support, 8-bit ASID support
L1 TLB 32 I/D, fully associative
L2 TLB 128 2-way, plus 4 lockable entries
L1 cache 32k I/D, 4-way.
L2 cache 512k, 8-way, lockable by way.
On-chip SRAM 256k at L2 speed.
Off-chip SDRAM 1GB DDR3-1066.

Table 3: The detailed hardware configuration of XC7Z020-
1CLG400I platform (processor subsystem).

We can see that the processor includes the following different
levels of cache: level-1 TLB (L1T), level-2 TLB (L2T), L1 data cache
(L1C) and L2 cache (L2C). The processor also features on-chip
SRAM (OCM). The MMU supports 4k pages and features a hard-
ware page table walker. This introduces the following different
cache levels where the memory access control decisions may be
made.
L1T: The L1 TLB is fully associative, which makes TLB coloring
infeasible and the entries are not lockable. Thus, MxU cannot
control this cache.

L2T: The L2 TLB will be accessed if there is an L1 TLB miss. The
L2 TLB is not fully associative (only 2-way set associative), which
allows for effective TLB coloring [18]. Additionally, Cortex-A9
provides 4 extra individually lockable entries. In this paper, we
make use of this feature for guaranteed TLB access (G1) in
response to MXU_DETERMINISTIC specifications.

L1C: On Cortex-A9, L2 TLB misses trigger the hardware page
table walker which starts walking the page tables from L1 data
cache. The L1 data cache is also not fully associative (4-way
set associative), which makes cache coloring possible. However,
the L1 data cache is too small to retain permanent data, thus
we forgo such an option. In this case, applications that specify
MXU_L1 will be TLB-pinned, or the allocation will return an
admission control failure (G2).

L2C: The L2 cache is not fully associative as well (8-way set asso-
ciative), which makes cache coloring possible but less effective.
Additionally, this processor provides way locking which pre-
vents evictions of the way’s contents. We prefer way locking
versus page coloring as it doesn’t put strong constraints on phys-
ical memory allocation. There is a trade-off: locking a way still

reduces the cache size available to the regular code and data,
which can harm application performance.

OCM: On-chip SRAM is accessed at L2 cache speed is assigned a
physical memory range. Composite enables the explicit typing
of OCM memory as kernel page tables, thus OCM can be used
to access them at L2 cost. The MxU implementation on this
hardware favors the use of the OCM for MXU_L2 specifications
as it doesn’t effectively shrink the cache.
This processor also supports ASIDs which are used for pro-

cesses that specify the MXU_INDEPENDENT flag. However, caches
are shared between processes, thus this only partially satisfies A2.

4.3 MPU-based MxU
On MPU-based systems, the emphasis is to enhance flexibility
by providing a virtually infinite number of protected memory re-
gions. As representative hardware based on an MPU, we use the
STM32F767IGT6, which features an ARM Cortex-M7 processor. Its
MPU does not provide virtual address translations (thus it can-
not provide A3). The detailed hardware configuration is listed as
follows:

Item Description
Speed 216MHz, 2.14 DMIPS/MHz
MPU 8 regions, pow-of-2 size/alignment requirement
L1 cache 16k I, 2-way, 16k D, 4-way.
On-chip SRAM 512k.
On-chip Flash 1M, with ART accelerator.
Off-chip SDRAM 32M 108MHz.

Table 4: The detailed hardware configuration of the
STM32F767IGT6 platform.

In MPU-based MxU, the PCTrie is used to store accessible mem-
ory ranges. A per-component representation of these ranges is
stored in the top-level PCTrie node that is used to directly program
the MPU registers (efficiently, using multi-register load and store
instructions). When the component is switched to, this representa-
tion is loaded into the MPU. The PCTrie contains a large number
of accessible memory ranges, while the MPU has only 8 regions,
with two used to protect access to an on-chip timer we use as a
timestamp counter (TIM2) and executable memory.MxU partitions
the remaining regions of the MPU into two sets: Static and Dy-
namic. Static regions are used in response to MXU_DETERMINISTIC
requests, and are always present in the MPU while the component
is executing. Dynamic regions are managed as a cache while multi-
plex the remaining PCTrie ranges. We extend Composite such that
if a PCTrie range is not present in the MPU (a load/store causes
a miss), a MPU exception triggers a software handler that finds
the desired range, performs an eviction from the Dynamic regions,
and adds the range to the MPU. We implement three eviction poli-
cies: round-robin, random, and Bit-based Pseudo Least Recently
Used (Bit-PLRU). While Static regions ensure deterministic requests
(G1), Dynamic ensure memory management flexibility (G3). MxU
enables the number of Static MPU regions to be determined by
application allocation requests, and uses the rest for Dynamic. If a
Static allocation would leave no Dynamic regions, the allocation re-
turns failure (G2).MxU tracks and saves MPU state per-component,
thus they all satisfy MPU_INDEPENDENT requests (thus A2).

5 EVALUATION
Hardware configurations. We use the MMU-based system de-
scribed in §4.2, and the MPU-based system described in §4.3. These
two architectures have significant market share and have many
resembling features: both are 32-bit, dual-issue, the number of
pipeline stages are close to each other, and both have a dynamic
branch predictor. Though many other architectures exist, we do
believe that the results obtained from these systems apply to other
systems as well due to the same underlying principles.

We’ll refer to the XC7Z020-2CLG400I system as 𝑆𝑚𝑚𝑢 , and the
STM32F767IGT6 system as 𝑆𝑚𝑝𝑢 . For all evaluations, the gcc ver-
sion 5.4.1 targeting the ARM architecture is used with the -O2 opti-
mization flag. 𝑆𝑚𝑚𝑢 is run at 767MHz, and 𝑆𝑚𝑝𝑢 is run at 216MHz.
The cache of both systems are always enabled, and for 𝑆𝑚𝑝𝑢 , the
flash accelerator is enabled along with execute-in-place support.
In synthetic benchmarks, the prefetchers of 𝑆𝑚𝑚𝑢 are disabled to
maximize the accuracy of memory access latency measurements,
while in application evaluation they are enabled.

All graphs in this section depict the average (the dot or the
darker bottom bar) and standard deviation (the error bar displayed
on the average bar) measurements. In all line graphs, only the
upper standard deviation bar is shown for clarity. All bar graphs
additionally depict the maximum measured value (the lighter top
bar).

5.1 Miss overheads
The basic page or region filling operation onMMUs orMPUs are the
deciding operations that force pessimistic bounds onmemory access
latencies on both of the platforms. To understand the overhead
of TLB misses and dynamic MPU region replacement, we first
investigate the hardware overheads for these operations. These
measurements will provide us with the loose – but often necessary
– upper memory access latency on our hardware.

We measure the overhead of a single load instruction whose
target data content is in L1 cache, while varying if we flush the
TLB and if we use Dynamic regions, and report the 99th percentile
values to rule out noise (e.g. due to timers). On 𝑆𝑚𝑚𝑢 , a hit in the
TLB results in 6 cycles, while a TLB miss takes 434 cycles. On 𝑆𝑚𝑝𝑢 ,
accessing a region in the MPU takes 2 cycles, while missing on a
dynamic region and executing MxU’s exception handler (assuming
a simple filling of the region without any replacement policy cost)
takes 360 cycles.
Discussion. Both systems show orders of magnitude slowdowns
for misses. Conservative WCET analysis must consider the upper
bounds of missing, thus deriving likely quite loose memory accesses
bounds. This motivatesMxU to better control the overhead of cache
misses, thus avoid such increases in the execution bound of tasks.

5.2 Synthetic Benchmarks
To investigate the overhead of memory accesses for different MxU
temporal specifications, and in the presence of interfering tasks, we
evaluate a number of synthetic workloads. Four synthetic bench-
marks are used: sequential access (seq), random access (ran), stride
access with a stride of 4kB & accessing 16 integers at a time (str),
and a simple 128*128 integer matrix self multiplication (mat). A
total of 262144 accesses are made for the first 3 benchmarks. The

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0

 100

 200

 300

 400

 500

 600

 700

 800

seq str ran mat

C
P
U

 c
lo

ck
 c

y
cl

e
s

tlb
l2c

ocm
mis

Figure 2: MMU temporal specifications’ performance on different
benchmarks. The horizontal axis is the different benchmarks, while
the vertical axis is the memory access latency.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0

 100

 200

 300

 400

 500

 600

 700

 800

seq str ran mat

C
P
U

 c
lo

ck
 c

y
cl

e
s

sta
RR

rand
plru

miss

Figure 3:MPU region replacement policies’ performance on differ-
ent benchmarks. The horizontal axis is the different benchmarks,
while the vertical axis is the memory access latency.

matrix multiplication benchmark only computes first 17 lines of
results, which performs 557056 accesses. On 𝑆𝑚𝑚𝑢 they do not
wrap around, while on 𝑆𝑚𝑝𝑢 , they wrap around in 64kB SRAM.
Memory access latencies. To evaluate the effect of differentMxU
mechanisms on the benchmarks, we run the four benchmarks with
different temporal specifications on both platforms, and with dif-
ferent eviction policies on 𝑆𝑚𝑝𝑢 . We compare against the costs
of uniformly missing in access control caches. Here we wish to
evaluate the effectiveness of MxU at controlling the pessimism of
memory access control check latencies.

On 𝑆𝑚𝑚𝑢 , we evaluate three temporal specifications:
MXU_DETERMINISTIC which locks the accessed pages into the TLB
(tlb), MXU_L2 using way locking which locks seven ways of the
L2 cache for page table storage (l2c) and OCM for page table
placement (ocm). We also plot the case where a TLB and a L2 miss
always occur for each memory access (mis). Figure 2 shows the
results.

On 𝑆𝑚𝑝𝑢 , we evaluate three Dynamic MPU region replacement
policies: random eviction (rand), round-robin eviction (RR), and Bit-
PLRU eviction (plru). These policies are also compared with Static
mappings (sta) for MXU_DETERMINISTIC, and misses (miss). All
policies are evaluated with three Dynamic MPU regions. The page
size used is 4kB, and a region holds two pages. Figure 3 plots the
results.
Discussion. In 𝑆𝑚𝑚𝑢 , we see the using MXU_L2 has a significant
ability to lower the worst-case access latency when compared with
full misses. Though the average-case access latency also shrinks,
this is largely due to the data caches not being flushed in cases
other than full misses. As the ran case shows, using way locking

 0

 100

 200

 300

 400

seq

str

0

100

200

300

400

1 10 100

ran

1 10 100
Number of memory accesses

C
P
U

 c
lo

ck
 c

y
cl

e
s

mat

mem l2c ocm tlb

Figure 4: 𝑆𝑚𝑚𝑢 ’s memory access latency under different interfer-
ence inter-arrival time. The four subfigures show the four bench-
marks respectively. The horizontal axis is the interference inter-
arrival time (in number of consecutive memory accesses), while the
vertical axis is the memory access latency.

demonstrates increases in both average and worst-case latencies
as we are using most of the cache for page tables, thus causing
increased miss rates for benchmark data. We study the trade-off in
way usage in the application evaluation later.

In 𝑆𝑚𝑝𝑢 , the three replacement policies all perform similarly,
which is in accordance with the fact that all three are widely used
today. For this reason, we only run the plru policy for all the fol-
lowing evaluations on 𝑆𝑚𝑝𝑢 . MXU_DETERMINISTIC specifications
indeed control average and worst-case latency, while misses are
quite pronounced, especially in matrix multiplication. For many of
the workloads, the average performance of the Dynamic memory
ranges is close to that of Static, thus showing the practical effec-
tiveness of extending the MPU to a virtually unlimited number of
regions.
Interference between different workloads. A significant com-
ponent in the worst-case behavior of applications is how much
co-running tasks and interrupt handlers can interfere with the
cachedMxU state. In cases where interference is strong, average-
case performance may be hampered as well. To investigate the
interference between different workloads, we run an adversarial
workload alongside the four synthetic benchmarks. This interfer-
ence represents the execution of interrupts or other applications.

Figure 4 shows interference measurements in 𝑆𝑚𝑚𝑢 . We run
the benchmarks in one thread, and an adversarial workload which
flushes all the data cache and TLB in another component.We test the
page table caching policies (for MXU_DETERMINISTIC and MXU_L2),
and compare against memory-backed page tables in the mem. In the
l2c case, seven L2 ways are locked down for page table storage.
𝑆𝑚𝑚𝑢 Discussion. All cases follow a decreasing curve with increas-
ing interference periods. The TLB-pinned cases consistently show
the lowest interference, followed by the OCM and L2 options. Im-
portantly, these techniques – driven by the temporal specifications

 1

 10

 100

seq

str

1

10

100

1 10 100

ran

1 10 100
Number of memory accesses

C
P
U

 c
lo

ck
 c

y
cl

e
s

mat

dyn-dyn dyn-sep sta-dyn sta-sta

Figure 5: 𝑆𝑚𝑝𝑢 ’s memory access latency under different interfer-
ence inter-arrival time. The four subfigures show the four bench-
marks respectively. The horizontal axis is the interference inter-
arrival time (in number of consecutive memory accesses), while the
vertical axis is the memory access latency.

of MxU – all show significantly lower interference values than tra-
ditional, in-memory page table placements. This result is somewhat
surprising: though TLBs are shared among applications, MxU’s
ability to place nodes at different levels in the cache hierarchy
significantly decreases the impact of interference.

On 𝑆𝑚𝑝𝑢 , the workload runs in a thread, and adversarial work-
load flushes all MPU regions in a different thread. The two threads
will use different memory temporal specification and component
combinations, and we report the memory access latencies under
different interference periodicities. We run the system with
MXU_DETERMINISTIC (for Static mappings) and MXU_L2 which
uses Dynamic mappings. In Figure 5 we compare the four test
cases listed in Table 5.

Case Adversarial Benchmark Component
dyn-dyn Dynamic Dynamic Same
dyn-sep Dynamic Dynamic Different
sta-dyn Dynamic Static Same
sta-sta Static Static Same

Table 5: The four test cases for 𝑆𝑚𝑝𝑢 .

𝑆𝑚𝑝𝑢 Discussion. For 𝑆𝑚𝑝𝑢 , the dynamic regions are generally sig-
nificantly more susceptible to interference than the static regions.
Further, dynamic regions can show even more interference when
sharedwithin the same component (the difference between dyn-dyn
and sta-sta) as they share the same “cache” of dynamic entries.
All of the Static workloads exhibit predictable execution without
significant extra MPU misses. The Static lines have a decreasing
trend along the x-axis mainly as the interference flushes normal
application cache-lines which need to be reestablished, and not
because of MPU misses. It is noteworthy that in the str’s dyn-dyn
case, an inter-arrival time of 4 outperforms 5, due to the fact that 4
is a divisor of 16 which is the stride length. We don’t show the case

 1

 10

 100

 1

 10

 100

armnn sqlite duk-mdl duk-cov

C
P
U

 c
lo

ck
 c

y
cl

e
s

(x
1

0
7
)

0way
1way
5way
6way
7way
8way

Figure 6: 𝑆𝑚𝑚𝑢 ’s L2 locked down ways and application running
time. 0way-8way means 0-8 L2 ways locked down respectively. The
horizontal axis is the different applications, while the vertical axis
is the applications’ running time.

of interference across components with Static mappings as there is
none.

5.3 Application Evaluation
In this section we present real-world application evaluations using
the ARM’s ARMNN, a neural network package, SQLite3, a data-
base engine, and Duktape, a javascript engine commonly used in
IoT systems. We use ARM CMSIS-NN V1.0.0 (armnn) to do image
recognition using a CIFAR-10 configuration which has three convo-
lution layers, then ReLU activation and max pooling layers, finally
followed by a fully-connected layer. The input to the network is
a 32x32 pixel color image which classifies to number 0-9. Sqlite
V3.25.2 (sqlite) is run with a in-memory database that has one
table, which has three columns containing integer primary key
ID, string and integer respectively. The SQL workload inserts 16k
lines into the table, deletes the lines with ID=3n, then updates the
lines with ID=3n+1, then queries the lines with ID=3n+2, and at
last deletes all lines in the table. Duktape V2.2.0 is run with two
scripts: one is CPU-bound and picked from the Duktape testbench
computing the Mandel pattern (duk-mdl), the other is from the
jStat library that calculates covariance of two arrays containing
75000 numbers each (duk-cov). The total application running time
is measured in all evaluations unless otherwise noted.
Application performance vs. locked down L2ways. For 𝑆𝑚𝑚𝑢 ,
L2 ways are locked down for page table preservation in MXU_L2
with the l2c policy, and this reduces the L2 cache available to ap-
plications and may cause performance degradation. To investigate
the impact, we lock down different numbers of L2 ways and run
the four applications, and the results can be found in Figure 6.
Discussion. It is noteworthy that all the applications are long-running,
thus their average-case and worst-case execution time are very
close, making it hard to distinguish them from the each other; the
standard deviation bar is also negligible. For this reason, we do not
discuss worst-case and average-case performance separately in this
section.

For 𝑆𝑚𝑚𝑢 , locking fewer than five L2 ways for page tables has
minimal impact on application performance, less than 4.9%. For
applications that have a small working set such as armnn and
duk-mdl, locking down even more ways does not take a heavy
toll thanks to the L1 cache. However, the overhead impacts sqlite
performance if the ways locked down exceed five, leading to 124.6%

 1

 10

 100

 1000

 10000

 1

 10

 100

 1000

 10000

armnn sqlite duk-mdl duk-cov

C
P
U

 c
lo

ck
 c

y
cl

e
s

(x
1

0
6
)

sta
3dyn
2dyn
1dyn
2d-1s

Figure 7: 𝑆𝑚𝑝𝑢 ’sDynamic region number and application running
time. stameans fully Static regions, 1dyn-3dynmeans 1-3Dynamic
regions respectively, and 2d1s means running one half of the ap-
plication workload in Static regions and the other half in Dynamic
regions. 2d1s is only shown for sqlite and duk-cov. The horizon-
tal axis is the different applications, while the vertical axis is the
applications’ running time.

slowdown if all are locked. This is due to the fact that sqlite has a
large working set. On contrast, duk-cov accesses three arrays lin-
early and locking ways does not significantly impact performance
thanks to L1 prefetcher.

Locking page-tables into L2ways is an effectivemeans of decreas-
ing memory access latencies, but comes at the cost of effectively
decreasing cache size for application data. Here we see that it varies
per application how much this impacts performance.MxU relies
on OCM and TLB pinning primarily, thus minimizing the need to
use L2 ways. The admission control policies can reject allocation
requests to result in too many pinned ways.
Application performance vs. dynamic region number. For
𝑆𝑚𝑝𝑢 , the relationship between the available Dynamic region num-
ber and real-world application performance is investigated in this
section, with results shown in Figure 7. armnn is run using internal
SRAM; sqlite, duk-mdl and duk-cov are run with a 4MB heap
in external SDRAM which uses 64kB pages, and each region holds
two pages.
Discussion. For 𝑆𝑚𝑝𝑢 , the number of Dynamic regions available does
have an impact on performance, depending on the application type.
For CPU-bound applications that have a small working set such as
armnn and duk-mdl, the performance gap between three dynamic
regions, and only static (3dyn versus sta) is negligible, at less than
1%. For memory-bound applications that have a larger working
set such as sqlite and duk-cov, 3dyn is less performant than
sta, with 36.9% and 49.7% overhead respectively, and performance
degrades sharply as the number of available regions shrink. In the
case of duk-cov, livelocks occur if only one region is available to
it due to double-word memory access instructions such as ldrd
and strd that do accesses across region boundaries. The 1dyn data
shown for duk-cov is obtained by supplying additional compiler
options to suppress the emission of these instructions, decreasing
performance further. Thus, when ldrd and strd are used in an
application, at least two Dynamic regions are required. As the 2d1s
case shows, even partially using Static regions can lower application
execution time.

These results are somewhat surprising. Though dynamic regions
do impose some overhead, using a small number of dynamic regions,

 0

 80

 160

 240

 320 armnn

sqlite

0

40

80

120

10 100 1000

duk-mdl

10 100 1000
Microseconds

C
P
U

 c
lo

ck
 c

y
cl

e
s

(x
1

0
6
)

duk-cov

mem l2c ocm tlb

Figure 8: 𝑆𝑚𝑚𝑢 ’s application data side TLB stall time under differ-
ent interference inter-arrival time. The four subfigures show the
four applications respectively. The horizontal axis is the interfer-
ence inter-arrival time, while the vertical axis is the data main TLB
stall time.

especially if paired with some static allocations, can remove much
of the dynamic overhead of MPU miss processing. Though we do
not investigate it here, changing the memory range represented by
each region is another means to control overhead.
Application performance vs. interference. To investigate the
effectiveness of MxU under interference for real-world applications,
we run an adversarial workload alongside the four applications. To
make measurements accurate for armnn, we accumulate its results
for 50 consecutive runs.

For 𝑆𝑚𝑚𝑢 , we run the application and the adversarial workload
which flushes L1 cache, L2 cache, and TLB in two different com-
ponents. On average, many applications may not have significant
performance degradation due to mutual TLB evictions. However,
in the worst case, they effectively flush the TLB entries of a hard
real-time application, and can do so at the rate of the minimum
interrupt inter-arrival. Thus, to assess this impact, we flush all the
caches and TLB to measure the worst case. To avoid impacting
application performance only four L2 cache ways are locked down
in the l2c case. We switch to the application first for the interfer-
ence inter-arrival time, then switch to the adversarial workload to
complete a cache flush, and then repeat the process until the appli-
cation finishes running. To understand the MMU overhead, we use
a Cortex-A9 integrated performance counter that directly measures
the data-side TLB stall overhead, which we leverage to directly show
MMU overheads. By using this performance counter, the overhead
of TLB misses are isolated from other system overheads including
instruction cache and non-page-table data cache misses. Figure 8
shows the application interference measurements in 𝑆𝑚𝑚𝑢 .
𝑆𝑚𝑚𝑢 Discussion. For 𝑆𝑚𝑚𝑢 , tlb has lower TLB stall cycles than
l2c and ocm in all cases, which both control overhead more than
mem, especially for cases where the interference is frequent, e.g. 10-
1000 𝜇s. Note that the maximum TLB interference is related to the
minimum interrupt inter-arrival which can be quite small for some

 0

 100

 200

 300

 400

 500

armnn

sqlite

0

100

200

300

400

500

10 100 1000

duk-mdl

10 100 1000
Microseconds

C
P
U

 c
lo

ck
 c

y
cl

e
s

(x
1

0
7
)

duk-cov

interf normal

Figure 9: 𝑆𝑚𝑝𝑢 ’s application running time under different inter-
ference inter-arrival time. The four subfigures show the four appli-
cations respectively. The horizontal axis is the interference inter-
arrival time, while the vertical axis is the application running time.

devices. Such high interrupt frequencies may originate from, for
example, high-speed off-chip analog-to-digital converters (ADCs).
For the sqlite application, a TLB stall improvement of 68.0% is
reached with interference at a 10𝜇s periodicity. For all cases, the
TLB stall cycles have a decreasing trend along the x-axis, showing
the expected decreased interference with longer inter-arrival time.
The performance difference between l2c and ocm is due to their
memory organization, which is not further discussed here.

For 𝑆𝑚𝑝𝑢 , we run the application and the adversarial workload in
the same component with threeDynamic regions available for them.
Note that MxU completely prevents inter-component interference on
MPU-based systems, so here we focus on studying contention for
dynamic regions within a component (a much more predictable
activity). We compare the case where the adversarial workload
evicts all MPU regions (interf) with the case where it does not
evict regions (normal). We use the same reciprocal running pattern
described in 𝑆𝑚𝑚𝑢 , and we run the adversarial workload for a fixed
amount of time in every interference to cancel out its running time,
then the difference between the two cases’ application running
time shows the impact of interference on execution, as shown in
Figure 9.
𝑆𝑚𝑝𝑢 Discussion. For 𝑆𝑚𝑝𝑢 , the applications running on Dynamic
memory are susceptible to interference, especially when the appli-
cation have a large working set (sqlite and duk-cov). However,
in the common case where the inter-arrival time is more than 100
𝜇s, the Dynamic overhead due to interference is only up to 6.1% for
all cases. This means that Dynamic regions is practical for many
best-effort applications, increasing their flexibility without much
performance loss. For all cases, the application running time has
a decreasing trend along the x-axis, showing decreased interfer-
ence with longer inter-arrival time. We don’t show the case for
Static memory, nor inter-component interference as there is no
MPU-induced interference.

6 RELATEDWORK
MPU as cache. Though we know of no open-source, scientifi-
cally evaluated systems that treat the MPU as a per-process cache
with dynamic regions, some systems have attempted this support.
PXROS-HR [9], for the TriCore architecture, allegedly keeps caches
of MPU contents for different processes. It allegedly allows user-
level handling of MPU faults, and changing the mappings on the
fly to emulate a larger number of regions. However, no in-kernel
support of the dynamic swapping features are supplied, and no
generic interface is provided across different architectures; it also
does not provide any pointers to algorithms or data structures for
region replacements. As this system is not open source, we cannot
evaluate against it, nor attest to its capability.

Another implementation which employs per-process MPU cache
and allows swapping of MPU entries is Emcraft’s Cortex-M ucLinux
port [5], which runs orders of magnitude slower than MxU in
Composite as it must execute entirely from external DRAM. It has
hard-coded kernel policy to only lock the stack segment for each
process. Dynamic regions are tracked in a linear table, leading to
𝑂 (𝑛) cost misses.
Memory access emulation.Memory access emulation was also
proposed to circumvent the MPU region number or alignment con-
straints. In [2], automatic application compartments are deployed
on an ARM Cortex-M4 platform with code generated by a modified
LLVM backend. When a compartment makes an access to the stack
segment that is not directly accessible by its MPU settings, the
access is permission checked then performed within a fault handler
routine. Though it allows accessing memory regions that are not
covered by the current MPU region settings, it triggers a fault on
every such memory access. This can cause significant overheads
on program execution, while our MxU technique can largely avoid
such overheads.
TLB lockdown and TLB coloring. TLB coloring was proposed
by [18] to provide more predictable management of the TLB. In
the work, they designed and implemented an intelligent allocator
that takes physical page address to TLB entry mappings into ac-
count. Their allocator can guarantee that no two pages in different
processes are mapped to the same TLB entry.

Somework also explored the benefits of TLB lockdown [10]. They
conducted the work on an ARM-based processor and conclude that
the static lockdown provides little TLB miss overhead.

In contrast to these previous works, MxU provides a unifying
abstraction for predictable memory access control, that uses what-
ever hardware mechanisms are available, including TLB coloring
and pinning. We compare not just the ability to decrease memory
access execution times via TLB pinning, but also the utility of using
data caches for page table nodes.
Cache partitioning. Cache partitioning is a standard approach
to isolating the working sets of different processes [15, 19, 21].
If the cache lines of different processes are disjoint, the different
working sets will not interfere with each other, thus reducing inter-
application thrashing. This research focuses on application data,
and not on the access control mechanism data-structures which
are accessed on each application load/store. In [16], compiler in-
frastructure is leveraged to arrange application code and data to

distinct cache partitions so that the real-time portions’ WCET is im-
proved. In [8], intra-application code partitioning is also considered
to map different functions to different cache lines, which reduces
the instruction cache misses across function call boundaries. Such
approaches are complementary toMxU.
Multi-core. Cache partitioning and TLB coloring can also be ap-
plied when there are multiple processors. In [11] and [14], last-level
cache (LLC) partitioning is considered in multi-core systems to
increase the schedulability of applications. In [25] this is also con-
sidered but only with regards to hot pages, which reduces online
analysis overheads and is less constrained than full page coloring.
In [1] and [24], the allocation techniques are extended to mixed-
criticality (MC) systems which are also multi-core. In [12], cache
allocation is dynamically performed, and virtualization extensions
are leveraged to achieve this. Their techniques focus on application
data and is orthogonal to ourMxU approaches. Applying both may
help avoid data cache pollution across processors or different crit-
icality levels when page table walks are triggered.MxU does not
currently address multi-cores, however this provides interesting
future work for both MMU and MPU.
Scratchpadmanagement. Some existing works allow the applica-
tions to allocate scratchpad memory for performance boost. In [3],
frequently used code and data pages are dynamically mapped to
the scratchpad, resulting in a 32% energy saving and a 47% accelera-
tion. In [20], the latencies of moving code and data to scratchpad is
hidden by a synergy of dedicated hardware and a modified LLVM,
which improves WCET. In [22], integer linear programming and
heuristics is applied to make static scratchpad allocations that can
minimize the task’s WCET. Other research also integrates scratch-
pad management into the compiler infrastructure [13], using graph
coloring to allocate application arrays to the scratchpad. Unlike
MxU, these works still put emphasis on application data placements
and not on access control mechanism data structures.
Temporal specifications. Some recent existing work also explore
the possibility of assigning temporal specifications to memory allo-
cations. In [6], a deterministic memory abstraction similar to MxU
is described. However, their abstraction are dedicated to MMU-
based systems, and requires both OS and hardware extensions.
Also, multiple levels of predictability are lacking in their temporal
specification. On the contrary, ourMxU abstraction remains uni-
form across MMU and MPU, and accommodates more than two
levels of predictability.

7 CONCLUSIONS AND FUTUREWORK
This paper introducesMxU, a memory access control abstraction
that generalizes MMUs and MPUs, integrates temporal specifica-
tions into the memory allocation API, and ensures flexible memory
management, good average-case performance, and the ability to
tightly bound the impact of memory access control on the WCET
on tasks. For MMU-based systems, MxU tighten bounds on the
TLB stall cycles by enabling the control of the cache placement of
page tables, reducing application TLB stall by up to 68.0% under
100kHz interference. For MPU-based systems, MxU demonstrates
the use of Dynamic regions to provide a virtually unlimited num-
ber of regions, enabling flexible dynamic memory management
with an application overhead of down to 1% and up to 6.1% with

10kHz interference. Given the modern security requirements that
are pressuring embedded and IoT systems, we believe that MxU
enables more feature rich microcontrollers, and more realistically
predictable microprocessors.

This paper addresses neither multi-core nor program data re-
lated cache or scratchpad management. Combining these facets
withMxU certainly leads to even more variants of temporal spec-
ifications, which we reserve as a direction for interesting future
work.

REFERENCES
[1] Micaiah Chisholm, Bryan C Ward, Namhoon Kim, and James H Anderson. 2015.

Cache Sharing and Isolation Tradeoffs in Multicore Mixed-criticality Systems. In
RTSS.

[2] Abraham A. Clements, Naif Saleh Almakhdhub, Saurabh Bagchi, and Mathias
Payer. 2018. ACES: Automatic Compartments for Embedded Systems. In USENIX
SEC.

[3] Bernhard Egger, Jaejin Lee, and Heonshik Shin. 2008. Scratchpad Memory Man-
agement in a Multitasking Environment. In EMSOFT.

[4] Kevin Elphinstone and Gernot Heiser. 2013. From L3 to seL4 what have we learnt
in 20 years of L4 microkernels?. In SOSP.

[5] Emcraft. 2019. ucLinux: https://github.com/EmcraftSystems/linux-emcraft, re-
trieved 4/12/19.

[6] Farzad Farshchi, Prathap Kumar Valsan, Renato Mancuso, and Heechul Yun.
2018. Deterministic Memory Abstraction and Supporting Multicore System
Architecture. In ECRTS.

[7] Phani Kishore Gadepalli, Robert Gifford, Lucas Baier, Michael Kelly, and Gabriel
Parmer. 2017. Temporal Capabilities: Access Control for Time. In RTSS.

[8] Amir H. Hashemi, David R. Kaeli, and Brad Calder. 1997. Efficient Procedure
Mapping Using Cache Line Coloring. In PLDI.

[9] HighTec EDV-Systeme. 2019. PXROS-HR: https://hightec-
rt.com/en/products/real-time-os.html, retrieved 4/12/19.

[10] Takuya Ishikawa, Toshikazu Kato, Shinya Honda, and Hiroaki Takada. 2013.
Investigation and improvement on the impact of TLB misses in real-time systems.
In OSPERT.

[11] Hyoseung Kim, Arvind Kandhalu, and Ragunathan Rajkumar. 2013. A Coordi-
nated Approach for Practical OS-Level Cache Management in Multi-core Real-
Time Systems. In ECRTS.

[12] Tomasz Kloda, Marco Solieri, Renato Mancuso, Nicola Capodieci, Paolo Valente,
and Marko Bertogna. 2019. Deterministic Memory Hierarchy and Virtualization
for Modern Multi-core Embedded Systems. In RTAS.

[13] Lian Li, Lin Gao, and Jingling Xue. 2005. Memory coloring: A compiler approach
for scratchpad memory management. In PACT.

[14] Renato Mancuso, Roman Dudko, Emiliano Betti, Marco Cesati, Marco Caccamo,
and Rodolfo Pellizzoni. 2013. Real-time Cache Management Framework for
Multi-core Architectures. In RTAS.

[15] Sparsh Mittal. 2016. A Survey of Techniques for Cache Locking. ACM Trans. Des.
Autom. Electron. Syst. (2016).

[16] Frank Mueller. 1995. Compiler Support for Software-based Cache Partitioning.
In LCTES.

[17] Runyu Pan, Gregor Peach, Yuxin Ren, and Gabriel Parmer. 2018. Predictable
Virtualization on Memory Protection Unit-based Microcontrollers. In RTAS.

[18] Shrinivas Anand Panchamukhi and Frank Mueller. 2015. Providing Task Isolation
via TLB Coloring. In RTAS.

[19] Moinuddin K. Qureshi and Yale N. Patt. 2006. Utility-Based Cache Partitioning:
A Low-Overhead, High-Performance, Runtime Mechanism to Partition Shared
Caches. In MICRO.

[20] Muhammad Refaat Soliman and Rodolfo Pellizzoni. 2017. WCET-Driven Dynamic
Data Scratchpad Management With Compiler-Directed Prefetching. In ECRTS.

[21] G. E. Suh, L. Rudolph, and S. Devadas. 2004. Dynamic Partitioning of Shared
Cache Memory. J. Supercomput. (2004).

[22] Vivy Suhendra, Tulika Mitra, Abhik Roychoudhury, and Ting Chen. 2005. WCET
centric data allocation to scratchpad memory. In RTSS.

[23] Qi Wang, Yuxin Ren, Matt Scaperoth, and Gabriel Parmer. 2015. Speck: A Kernel
for Scalable Predictability. In RTAS.

[24] Bryan C Ward, Jonathan L Herman, Christopher J Kenna, and James H Anderson.
2013. Making Shared Caches More Predictable on Multicore Platforms. In ECRTS.

[25] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. 2009. Towards Practical Page
Coloring-based Multicore Cache Management. In EuroSys.

	Abstract
	1 Introduction
	2 Memory Protection Mechanism Background
	2.1 Memory Management Units
	2.2 Memory Protection Units
	2.3 MMU and MPU Summary

	3 MxU Design for Flexibility and Predictability
	3.1 MxU Abstraction
	3.2 Guarantees and Aims
	3.3 API Design
	3.4 Design for MMU-based Systems
	3.5 Design for MPU-based Systems

	4 MxU Implementation
	4.1 MxU-enabled Composite Kernel
	4.2 MMU-based MxU
	4.3 MPU-based MxU

	5 Evaluation
	5.1 Miss overheads
	5.2 Synthetic Benchmarks
	5.3 Application Evaluation

	6 Related Work
	7 Conclusions and Future Work
	References

