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Abstract—With the increasing penetration of embedded sys-
tems into the consumer market there is a pressure to have all of
inexpensiveness, predictability, reliability, and security. As these
systems are often attached to networks and execute complex
code from varying sources, reliability and security become
essential. To maintain low price and small power budgets, many
systems use small microcontrollers with limited memory (on
the order of 128KB of SRAM). Unfortunately, the isolation and
protection facilities of these systems are often lackluster, making
a principled treatment of reliability and security difficult.

This paper details a system that provides isolation along
the three dimensions of CPU, memory, and I/O on small
microcontrollers. A key challenge is providing a effective means
of harnessing the limited hardware memory protection facilities
of microcontrollers. This is achieved through a combination of a
static analysis to make the most of limited hardware protection
facilities, and a run-time based on our Composite OS. On this
foundation, we build a virtualization infrastructure to execute
multiple embedded real-time operating systems predictably.
We show that VMs based on FreeRTOS achieve reasonable
efficiency and predictability, while easily enabling scaling up to
8 VMs in 512 KB SRAM.

I. INTRODUCTION

With the growing interest in embedded computation and the

Internet of Things (IoT), it is important that the computational

infrastructure underlying these systems is reliable and secure

while maintaining the necessary predictability properties. The

increasing adoption of these systems in consumer devices

is driving the omnipresent network connectivity that char-

acterizes IoT devices. With a network connection, come the

security concerns associated with providing malicious adver-

saries the ability to interact with the system. The customizable

filtering and processing of sensor data are also moving these

systems away from the traditional static code-bases. Further,

we see increasing decentralization in the development of

these systems. Different code bases from different clients

and system designers that are possibly at different assurance

levels, must execute on the shared hardware. This multi-

tenancy and mixed-criticality [1] additionally motivate strict

isolation.

Outside of embedded systems, traditional means to bolster

system dependability and security often rely on increasing iso-

lation. For example, to prevent the unconstrained propagation

of a fault or compromise, hardware facilities such as page-

tables are used to segregate memory. However, due to cost,

Size, Weight, and Power (SWaP) constraints, the hardware
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facilities for isolation in embedded and IoT domains are

often quite constrained. Especially for the least expensive and

most power efficient variants of these systems, an important

question is if we can provide both real-time predictable

execution and the isolation facilities required.

A Memory Protection Unit (MPU) is a simple hardware

memory isolation capability found in many microcontrollers.

As opposed to Memory Management Units (MMUs), MPUs

do not provide a translation between page-granular ranges

of virtual and physical addresses. Instead, MPUs allow con-

trolling access to regions of physical addresses. MPUs are

popular on systems that require low power consumption and

predictability with an emphasis on inexpensiveness and sim-

plicity. These systems often avoid the use of data-caches or

use very small caches as the limited amount of on-chip SRAM

executes at a rate commensurate with the processor. MPUs do

not use an in-memory structure to track memory accessibility,

and there is little variability in memory access times. In

contrast, MMUs often use page-tables paired with Translation

Lookaside Buffer (TLB) caches. TLB misses require page-

table walks and add significant jitter to memory access times.

Thus, MPUs are valuable for systems with less variability in

an application’s memory demand, especially when the TLB

size is much smaller than the total number of pages required

by the application. In these situations, MPU-based systems

benefit from the increased predictability from significantly

decreased memory access jitter. Given the wide deployment of

MPUs in microcontrollers, this paper introduces an adaptation

of the Composite µ-kernel operating system [2] to these

processors to provide increased dependability and security in

these systems.

Different microcontrollers have very different MPU config-

urations that vary in terms of the size, alignment, and number

of regions of memory that can be protected. These varying

constraints mean that most embedded OSes provide hardware-

specific APIs for programming the MPU. In contrast, in this

paper, we use an existing OS (Composite) with a strong

access control model, and generalize its memory protection

facilities to both MMUs and MPUs. This enables the use

of a general API based on Path-Compressed radix Tries

(PCTries) that generalize both hardware protection mecha-

nisms, while maintaining the system’s predictability proper-

ties. This system abstracts protection domains as components

that encapsulate user-level code, data, and thread execution.

A component is a light-weight abstraction over a hardware

memory protection context, and a capability table [3], both

of which limit the component’s access to system resources.

Components implement system resource management policies

including scheduling, memory mapping/access control (based



on PCTries), and I/O, thus providing isolation not only for

applications, but also among system services.

Composite, augmented with PCTries to support MPUs,

provides the foundation for microcontroller memory isolation.

However, to provide the strong isolation between different

tenants, between code with varying origins and assurance

levels, or when increased fault tolerance is desirable, CPU

and I/O isolation are also required. Thus, this paper com-

bines PCTrie support with hierarchical scheduling [4] and

a component that abstracts away and restricts I/O accesses

to provide both CPU and I/O isolation. Implemented at

user-level, the system scheduler [5], [6] and I/O manager

components together implement a Virtual Machine Monitor

(VMM) [7] that enables the predictable and isolated execu-

tion of Virtual Machines (VMs), each of which contains a

traditional Real-Time Operating System (RTOS). To the best

of our knowledge, this is the first virtualization system for

MPU-based microcontrollers.

Using MPUs effectively is not straightforward as they are

limited in the number of contiguous regions they can protect,

and in the alignment and configuration of those regions. Espe-

cially when memory is shared between different components

and VMs, the MPU protection of a large number of the

shared memory ranges can surpass the capacity of the MPU.

Additionally, unaligned components and shared memory can

also require more MPU resources than are available. As the

MPU is a very limited resource, we must lay out the memory

of each component and of their shared memory regions in

such a way to that we stay within the configuration space

of the MPU. Thus, a core component of this research is

a static memory layout algorithm that enables the VMM’s

dynamic memory mapping to best use the MPU. This static

memory layout for all memory that each component can

possibly access is a key aspect of enabling MPUs to be used

for effective VM isolation.

Contributions. We begin by discussing a background on

MPUs (§II), then focus on this paper’s contributions:

• An algorithm to enable the effective use of a limited

number of MPU resources by intelligently laying out

component memory, and potential shared mappings (§III).

• The design (§IV) and implementation (§V) of memory

access control and kernel interactions based on PCTries,

and the adaptation of an existing microkernel to use them.

• A resource-constrained paravirtualization infrastructure to

provide resource multiplexing and isolation for CPU,

memory, and I/O (§VI).

• Finally, we provide an evaluation of Composite based on

PCTries and its virtualization infrastructure compared to

existing (not virtualized) RTOSes (§VII).

II. EMBEDDED SYSTEM HARDWARE AND

MEMORY PROTECTION

To better understand the challenges in well-utilizing MPUs

for the complex isolation configurations of a virtualization

infrastructure, we review MMUs and MPU configuration

details.

A. Page Tables and Memory Management Units

Page tables are pervasive in higher-end CPUs, and they

provide both (1) page-granularity protection, and (2) virtual-

ization of memory accesses by translating between virtual and

physical addresses. This virtualization enables the decoupling

of physical memory layout and executable memory, as well

as the overlap of different component’s virtual addresses.

A common architecture for MMUs is based on page-tables

implemented as radix tries. Hardware page-table walking

logic activates in response to a load or store to translate

between virtual and physical addresses. To avoid the sig-

nificant overhead of this walk on each memory access, the

Translation Lookaside Buffer (TLB) caches a limited number

of translations. The impact of TLB misses can be significant

on performance and on predictability. This has motivated

TLB partitioning via coloring [8] to increase isolation within

the translation cache. Additionally, MMUs complicate fine-

grained isolation, and can induce significant overhead [9]. To

increase the number of virtual addresses indexed by the TLB,

the use of super-pages is common [10].

B. Memory Protection Units
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Fig. 1: MMU and MPU differences. MMUs do page-based transla-
tion, which is denoted by dotted lines; MPUs instead do region-based
protection, which is denoted by vertical solid lines. RX:read-only and
executable; RO:read-only; RW:read-write.

Embedded systems are historically designed for a specific

task, thus enabling code specialization and avoiding the need

for a feature-rich, general-purpose system. This enables the

use of slower processors (ARM Cortex-M processors often

span between 10-300 MHz), and smaller amounts of memory

(from 16-1024 KB). Restricted memory sizes mean that the

memory is often SRAM, co-located with chip logic, and

executing at a rate commensurate with that logic. This avoids

the need for large caches in-between the processor’s logic and

memory thus further simplifying chip design, significantly

reducing power requirements, and increasing the predictabil-

ity of software execution. In this environment, the memory

requirements of page-tables, the internal fragmentation due

to page-granularities, and the increased variance in memory

accesses due to TLB accesses, are not desirable. In contrast,

MPU access control state is maintained directly in registers

that are programmable only in kernel-level, and have more

flexible granularity control. Unfortunately, as MPUs do not

provide virtualization of addresses, all memory must be

non-overlapping, thus implementing a Single Address Space

Operating System (SASOS) [11].

MPUs are widely provided by many embedded system

architectures include ARM Cortex-M, MIPS, PowerPC and

AVR32. Though there are subtle differences between MPU

implementations, we present a generalization here. MPUs



provide a number of regions {r0, r1, . . .} = R. A region,

ri, can be configured to protect a range of memory starting

at an address ai, of a size si. Each region, ri, has a number

of S subregions that each cover an extent of memory of size

si/S. si is constrained by having a minimal value si ≥ š,

and may be required to be a power of two. Each region

and subregion has some set of access permissions including

{readable,writable}. By default, memory is not accessible

while in user-level code, and regions and subregions define

the ranges of physical memory that are accessible for which

types of memory access. Regions often have an alignment

constraint A which can include constant alignments (i.e. on

word boundaries, A = (ai mod 4 = 0)), or size-aligned

boundaries (i.e. A = (ai mod si = 0)).

MPU examples. Many ARM Cortex-M microprocessors, like

the Cortex-M7, have MPUs configured as |R| = 1 to 16,

S = 8, A = (ai mod si = 0), š = 32, and si must

be power-of-two. Each region has access permissions in

{readable,writable}, while each subregion inherits the per-

mission from the region, and additionally has a bit for

accessibility. MIPS M14k is simpler, |R| = 1 to 16, S = 1,

A = (ai mod 4 = 0), and š = 4. In this research, we focus on

ARM Cortex-M microprocessors as they are widely deployed

and popular, but also because they have some of the most

complicated MPU constraints.

C. I/O and Non-Volatile Memory

Many microcontrollers support execute in place read-only

memory from flash at fixed virtual addresses. This enables the

limited SRAM to be populated only with writable memory.

Similarly, most I/O devices are memory mapped and accessed

directly with loads and stores. To restrict different applica-

tions’ access to these regions, MPU regions and sub-regions

must be used appropriately. When a MPU region’s alignment

or granularity constraints prevent protecting individual de-

vices’ address ranges, access to them must be mediated by a

service (as in [12]).

D. Embedded System Use of MPUs

FreeRTOS and other embedded RTOSes commonly pro-

vide architecture-specific APIs to explicitly program MPU

regions (often avoiding subregions or exposing them as they

are). FreeRTOS is optionally configured to use the MPU.

To avoid modifying the structure of the system in which the

kernel is compiled as a library with applications, instead of

having a firm user-level/kernel separation, system call instruc-

tions (SVC) and the eventual handlers for them are inlined into

code to enable the execution of sensitive MPU modification

instructions. Though this effectively enables applications to

constrain memory accesses, possibly increasing reliability, it

does not provide security as the protection is discretionary.

Safer Sloth [13] combines inline traps and MPU programming

with static checks to ensure that the traps are used only where

expected by the kernel. As Safer Sloth applications are written

in C, this does not prevent security attacks that hijack control

flow (for example, self-modifying code and buffer overflows).

These systems provide increased reliability for non-malicious
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Fig. 2: Memory layout optimization. Each color in the figure
represents a different component, and each block in the memory
layout indicates a block of memory. The memory block size is some
power-of-two. If two colors are present in the same block, then the
block is shared between the two components. The MPU has |R| = 2,
S = 4, A = (ai mod si = 0), and si must be power-of-two. The
lines below the memory layout show the MPU region and subregion
configuration for each component, and the number following the “:”
is how many regions are required for that component. If a subregion
is active, then it is marked with a solid oval.

applications, but not the strong isolation for security, mixed-

criticality, and multi-tenancy.

In contrast, Tock [14] and the I/O virtualization work

of [12] confine application-accessible memory using MPU

regions. They employ a more traditional (non-inlined) separa-

tion of user- and kernel-level where the kernel abstracts away

MPU programming and simply scopes memory access to the

contiguous regions for code and data for each application.

These systems, though simple, do not support the dynamic

sharing relationships and complex MPU region layouts re-

quired for shared memory and virtualization.

III. EFFECTIVE MPU USAGE VIA MEMORY LAYOUT

A. Memory Layout’s Impact on MPU Usage

As systems require an increasing number of memory

protection barriers between different components at different

criticalities and from different sources, they require more

complicated management of the memory protection hardware.

For example, shared memory regions must be created between

VMs and the VMM, and stream processing and publisher/-

subscriber systems must create shared regions based on the

communication patterns. This is in contrast to traditional em-

bedded systems where components explicitly program MPU

regions to protect a small number of memory regions, often

one or two per component (see §II-D).

A subtle issue when providing finer-grained memory pro-

tection is that the MPU constraints around alignment, subre-

gions, and sizing make the memory layout of all code and

data in the system significantly impact how many regions are

required for each application. Figure 2 depicts two different

memory layouts of applications and their shared memory (for

simplicity, we ignore kernel and VMM components in this

example). In the first layout, memory is laid out naively and



the components require more regions than what the platform

can provide (two regions). Some shared memory regions

require separate MPU regions, and the non-power-of-two

aligned regions require multiple regions. The red component

requires four regions, and other components require three

regions. In the second layout, memory is laid out in a manner

to minimize the number of regions required to provide the

necessary protection. After the optimization, no component

uses more than two regions, and the green component requires

only one. Note that to achieve this optimized layout, a gap of

unused memory appears between the red and yellow memory

ranges. This represents memory overhead due to internal

fragmentation in the regions, the extent of which we study

in §VII. In current systems, designers are required to lay out

memory manually, or system images must be simple enough

(single applications) that region placement is trivial.

To enable MPU-based systems to provide increased protec-

tion, we investigate algorithms that both attempt to minimize

memory consumption while using a bounded number of

regions.

B. Memory Placement Algorithm

Our first approach to making a memory assignment was to

adapt the MPU constraints and component memory ranges

into a Satisfiability Modulo Theory (SMT) formulation1

Though the resulting solution is exact – if a memory layout

exists that uses regions and subregions within the hardware

constraints, it will find it – it took an impractical amount

of computation time. For simple MPU configurations (four

regions, four subregions, three components), solutions require

more than 24 hours. Therefore, we introduce a greedy heuris-

tic.

Algorithm 1: Memory Address Assignment Heuristic

Input: C: Set of components, A: Set of SRAM arenas

while |{c ∈ C | num allocated regions(c) > |R| − 1}| > 0 do1

collapsable = {c ∈ C | ∃a∈Ais enabled(a, c)}2

if |collapsable| = 0 then3

return None4

c = argmax
c∈collapsable

num allocated regions (c)
5

a0 = argmax
a∈accessible enabled arenas(c)

|users(a)|
6

O = accessible enabled arenas (c) \a07

partners = {a ∈ O | subregions(a) + subregions(a0) ≤ S}8

if |partners| = 0 then9

disable arena (c, a0)10

continue11

a1 = argmax
a∈partners

|users(a0) ∩ users(a)|
12

amerged = merge arenas (a0, a1)13

A = (A − {a0, a1}) ∪ {amerged}14

reenable all arenas ()15

end16

return assign addresses (A)17

Algorithm 1 shows the Memory Address Assignment Al-

gorithm that takes a set of ranges of memory for each compo-

nent, and determines a layout that can provide the necessary

protection within the system’s MPU configuration limitations.

We define an arena as a range of memory with a specific

access permission that is accessible by a component (e.g.

1Our implementation uses the Python API for the Z3 constraint solver
(https://github.com/Z3Prover/z3).

readable, or read-writable). Arenas include component code

and read-only data, writable data, shared memory regions

between different components, and system heaps to respond to

dynamic memory allocation. Importantly, these arenas denote

potential mappings for each component that are established

dynamically via requests to the run-time.

If all components have a number of arenas less than

|R|, then there is a trivial assignment of regions to arenas.

Otherwise we try to merge two region’s arenas into one

region, and use separate subregions for each arena to maintain

isolation. To effectively use the MPUs introduced in II-B,

multiple arenas must use separate subregions in the same

region as this lowers the number of regions required for

components. If a component requires too many regions, we

must decide which of its regions to combine with others.

Thus, we first choose a component that has the most regions

(line 5). Within that component we choose the arena that is

shared with the highest number of components (users) (line

6). Intuitively, removing the need for this region will decrease

the region requirements for the largest number of components.

To find the second region (the partner) to merge with, all

other regions of that component are considered. However, it

is possible that merging some of regions requires more than

S sub-regions, in which case the search must start again (line

9-11). By maintaining a boolean enabled flag for component

arena pairs, we ensure that the algorithm will never try to

merge the same two arenas repeatedly. Last, we select the

region to merge as the one with the largest intersection of

components that use it with the first region (a0). This process

is repeated until all component’s memory can be protected by

sub-regions.

At this point, the algorithm has a set of assignments of are-

nas to regions. The assign addresses subroutine sorts the

regions by their size (from largest to smallest), then lays them

out in memory in that order while abiding by their power-of-

two alignment requirement. One notable optimization here is

putting the beginning of the next region at the end of the last

used subregion of the previous region. While simple, we find

that this optimization improves memory utilization by up to

∼ 4×.

Heuristic sub-optimalities. We have qualitatively compared

the solutions output by the SMT solver with those of Algo-

rithm 1 and identified a number of ways the heuristic is sub-

optimal. In contrast to the heuristic, the SMT solutions often:

(1) use extra regions that are laid out contiguously immedi-

ately after a region of a larger size to generate a sub-region

of a non-power-of-two; (2) places arenas of various sizes into

contiguous sub-regions to minimize internal fragmentation;

and (3) enable arenas to span multiple contiguous regions,

possibly with varying sub-region size. These sub-optimalities

can lead to system configurations that could possibly fit within

a limited number of MPU regions/subregions and amount of

memory via intelligent memory layout (e.g. if the SMT solver

is used), but where Algorithm 1 fails to find them. Thus,

in §VII-D we study the impact of our greedy heuristic on

effectively utilizing memory.

Workflow with memory placement. Figure 3 depicts how

https://github.com/Z3Prover/z3
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Fig. 3: Memory and region layout toolkit. The toolkit will take the
component memory specifications and MPU/architecture informa-
tion, then turn that into a linker script with the memory assignment
algorithm. The final executable binary will be generated from the
linker script. The memory assignment algorithm also generates the
information needed by the shared memory manager.

the specifications for each component, for the possible shared

memory arenas, and for the hardware constraints are inte-

grated into Algorithm 1. The algorithm’s outputs are fed into

both a linker script to generate the system’s image, and to the

memory management service in the system to guide dynamic

requests.

IV. GENERALIZING OS SUPPORT FOR

HARDWARE MEMORY PROTECTION

To provide a strong form of isolation, we adapt the access

control abstractions of an existing OS that is based on

capability-based security [15], instead of adapting the ad-hoc

interfaces of an existing embedded RTOSes. The core security

properties of capability-based systems include that system

resources are referenced only through unforgeable tokens

called capabilities, and these capabilities are only accessible

to a component if delegated from another component that

already has a capability to the resource. All system memory

and kernel resources are accessible through capabilities, and

they can be used to provide strong isolation through con-

finement [16]. Capabilities have proven a good fit for simple

systems that focus on moving most resource management

functionality to user-level [2], [17], [18], [19].

This research uses a mechanism based on PCTries to

generalize the capability-based memory access control in

Composite – previously specific to MMUs – to control both

MPUs and MMUs. This requires updating both the capability-

tracking structures within the kernel, and the retyping infras-

tructure. To simplify the kernel and move dynamic kernel

memory allocation to user-level Composite uses memory

retyping to enable the user-level management of kernel mem-

ory [2] which is heavily inspired by seL4 [18].

A. Composite Kernel Abstractions

The resource management and isolation policies in a Com-

posite system are implemented in user-level components that

access and control system resources through capabilities. In

our system, the system scheduler (that also controls shared

memory), and the I/O manager form the conceptual Virtual

Machine Monitor that manage resources to ensure isolation

between RTOS VMs. They delegate system resources in

response to requests from VMs by mapping memory, creating

threads, and creating communication end-points.

Kernel objects and resources. The Composite kernel has

a small number of kernel objects: components, threads,

TCaps [5], communication end-points (synchronous and

asynchronous), and two different types of resource tables [2].

Resource tables are indexed by a capability, and map to

the referenced kernel resource. Composite has two types

of resource tables: page-tables which track memory access

permissions, and kernel resource capability tables which track

access to kernel resources (including other resource tables).

Page-tables view load/store memory accesses as capability

references which (via hardware-accelerated MMUs) resolve

to the kernel resource of a specific word of physical memory.

Kernel resource capability table operations require system

calls to perform operations on their resources. Each compo-

nent is essentially just a collection of two resource tables (one

of each type).

A thread is the basic unit of sequential execution, and each

component can have zero or more threads. A component with

a capability to a thread is able to schedule it. Communication

end-points take two forms: (1) sinv/ret which provide

synchronous communication between two components via

thread migration [20], and (2) asnd/rcv which provide asyn-

chronous event notification where a thread sends an event via

asnd which activates a thread waiting on rcv. Operations on

resource tables themselves include the ability to construct or

destroy resource tables (e.g. to create a new component), and

to copy a capability from one resource table to another. The

latter provides delegation between components, and requires

that a component have a capability to the resource tables of

a client.

Only components that have a capability to resource table

of a client can delegate to it. These components comprise the

system’s resource managers. To adapt Composite to control a

microcontroller’s MPU, we update the page-tables to provide

a more flexible means of tracking memory access control, and

update the memory management resource manager to use this

updated abstraction.

B. PCTries as a Generalization of MMUs and MPUs

Path-compressed Radix Tries (PCTrie). In contrast to the

radix tries underlying common page-table structures in which

subsequent levels translate a fixed number of bits, guarded

page-tables and general compressed radix tries [21] translate

varying number of bits. This enables a more memory-efficient

representation while supporting a sparse address space, and

allowing “pages” of sizes corresponding to any power of

two. The PCTries in our system map addresses to access

permissions instead of physical addresses; as MPUs don’t

perform translation, the access rights are sufficient.

Radix tries (i.e. page-tables) pass address translation

through a set of nodes with 2n entries that reference the next

nodes in the trie. Each node translates n bits of the address

until a page is referenced (which might be a superpage). In

contrast, PCTries enable the omission of internal nodes where

all possible translations share the same bits for the omitted



nodes. In effect, this removes “chains” of page-table nodes,

instead bypassing the need for more nodes by tracking the

common prefix of the bits of all following addresses. This is

particularly important when address spaces are sparse to save

memory and lookup time. Memory in many microcontrollers

is sparse: most addressable memory and I/O falls within a

4MB region. In such a case, the upper 10 bits are common to

all addresses, thus omitting the top levels of nodes. Similar

to superpages in page-tables, the least significant bits of an

address don’t require nodes, and instead result in addressing

a page of a larger size.

MPU regions as PCTries. PCTries have many similarities

with the MPU model introduced in §II-B. The ARM Cortex-

M model uses size-aligned regions (similar to superpages),

and requires power-of-two sized regions (thus sub-regions).

PCTries also have the same constraints on their superpages,

thus can be applied directly to generate MPU region config-

urations. The static memory layout from §III-B ensures that

each PCTrie requires no more than |R| × S protected spans

of memory.

Page-tables as PCTries. Page-tables are trivially PCTries

that omit no nodes to translate bits, and support multiple

superpage sizes based on the number of bits at the omitted

lower levels.

V. IMPLEMENTATION OF ISOLATION IN

CONSTRAINED EMBEDDED SYSTEMS

A. PCTrie Implementation

Composite normally supports page-tables consisting of

separately allocated nodes (each 4096 bytes) that are con-

nected together to form active page-tables on the x86. The

goals of using PCTries are to (1) represent the sparse

address space of small-memory systems with a small number

of nodes, (2) to eliminate the separate kernel allocation of

radix trie nodes, and, importantly, (3) to enable the efficient

and predictable programming of the MPU. The first goal is

met by the path-compressed nature of the PCTries, while

the second is enabled by inlining the PCTrie node memory

into the capability slots in a component’s capability tables.

The third is achieved by maintaining a “summary” of the

regions and subregions represented by the entire PCTrie on

each modification to the PCTrie.

Page-table nodes are dynamically allocated as separate

pages that adhere to the hardware-mandated format. In con-

trast, PCTrie representations offer more flexibility as they

are not directly bound to the hardware. Each PCTrie node

contains four references either to memory regions, or to the

next node in the PCTrie, thus translating two bits. Each of

these references also includes either the number of omitted

bits that are to be bypassed for subsequent addresses in the

next PCTrie node, or the size of the referenced memory

region.

The PCTrie node representation fits into 44 bytes. The

capability slots in Composite’s capability tables can be of

multiple sizes, and the largest size (64 bytes) is used to fully

contain PCTrie nodes. This enables components to avoid

allocating (retype, activate, and manage) separate memory

for each node [2]. Importantly, this means that memory

management overheads are amortized into capability-table

management, and significant memory is saved by removing

the page-granularity representation. User-level libraries man-

age all of the details of page-table management (using the safe

kernel APIs), and these libraries are adapted to understand

PCTries.

Efficient MPU updates. The MPU on ARMv7-M processors

is programmed through a set of memory-mapped registers,

namely the Region Number Register (RNR), Region Base

Address Register (RBAR) and Region Attribute and Size

Register (RASR). The RNR controls which region is being

programmed (though the RBAR has a region field that over-

rides RNR), while the RBAR and RASR control the start

address of the region, the size of the region, and the region’s

subregion statuses. No hardware assistance is provided for

loading these registers, so they must be filled manually.

To enable efficient programming of these registers, we

maintain a summary of all regions described in a PCTrie

in the head (top) capability. This summary is stored in the

exact MPU region representation expected by the RBAR and

RASR. When switching to a new component, the PCTrie

head’s summary is read into CPU registers and written into

MPU registers without interpretation. This enables efficient

MPU programming on the fast path, but relies on the sum-

mary containing all memory access information of the whole

PCTrie. To provide this invariant, all PCTrie operations that

change memory access (e.g. mapping and unmapping) both

modify the PCTrie and the summary. To enable this, each

PCTrie node contains back-pointers to the head, and enough

local information to know which addresses it represents.

This design does have one negative side-effect: the system

does not support aliases within a PCTrie, instead only of

memory itself. Semantic support for such in-PCTrie aliasing,

if required, can be provided by the user-level library that

manages the PCTries.

The RBAR/RASR are laid out contiguously in memory,

and are directly followed by three aliases. Given this, we

use the ARM Cortex-M7 processor’s multi-register load/store

(LDM/STM) instructions to accelerate MPU programming by

programming 4 regions at a time. §VII-A evaluates our use of

these instructions versus the hardware abstraction layer code

provided by the manufacturer.

VI. SMALL-SCALE VIRTUALIZATION

The memory management abstractions in Composite pro-

vide predictable protection for MPU-based microcontrollers.

With hardware protection, native code runs safely on micro-

controllers. Our goals in providing a virtualization infrastruc-

ture for resource constrained systems are to:

• enable efficient and predictable execution of each VM

close to that on the bare metal;

• use hierarchical scheduling [4] to maintain processor

isolation between VMs;

• use protected I/O demultiplexing through a component to

mediate I/O access and isolation;
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• effectively use the memory layout algorithm output to

enable effective use of the MPU and memory isolation;

and

• provide facilities for inter-VM communication.

To meet these goals, we use paravirtualization [22] to avoid

the complexity and overheads of emulating raw hardware

accesses (i.e. I/O accesses, timer accesses, and interrupts).

The Composite kernel essentially plays the role of the

access monitor – appropriately constraining resource accesses

– and we implement a Virtual Machine Monitor (VMM)

as user-level scheduler and I/O manager components. We

paravirtualize FreeRTOS by modifying the hardware-specific

platform layer to utilize the services of the VMM. Figure 4

depicts the entire system.

A. CPU Virtualization

As the Composite kernel include a scheduling policy,

each FreeRTOS virtual machine (FreeRTOS/VM) uses its

own scheduler, while using the dispatching facilities of the

Composite kernel. To control how each of these schedulers

is multiplexed across the processor, we employ hierarchical

scheduling. A single VMM scheduler component multiplexes

the CPU across VMs. For simplicity, the root scheduler uses

fixed-priority, preemptive scheduling, as does FreeRTOS.

Our infrastructure relies on Composite support for TCaps,

or temporal capabilities that enables controlled delegation

of time between different schedulers [5]. This infrastructure

enables two key features that we leverage: (1) each VM’s

scheduler can manage its own timer interrupts over the

window of time it has been delegated, and (2) hardware

interrupts can safely be vectored directly to a VM if it is the

sole VM interacting with the corresponding device. Please

see [5] for details of how this is done safely, properly, and

efficiently.

Fine-grained access to time By isolating system compo-

nents, the user-level can no longer directly access privileged

hardware resources. For example, native RTOSes often di-

rectly access SYSTICK, which gives a measure of the progress

of time. Each user-level scheduler must maintain time, how-

ever, both for execution accounting, and properly delegation

of execution time. We use our platform’s (STM32F767IGT6)

TIM4 timer register to provide a cycle-accurate counter.

Unfortunately, TIM4 is only 16 bits and we require 64-bit

timestamps, so we also must maintain a software word to

track the “higher-order bits”. In the actual implementation, we

increase a 64-bit variable by 65536 when the TIM4 overflow

interrupt happens. When reading the timestamp counter, we

read the 64-bit variable and add it to the current TIM4 counter

value to get the correct timestamp. The 64-bit timestamp value

is readable by all components, but is only writable by the

kernel.

Schedulers are able to control timer interrupts within

their TCap’s allocated slice of time. To support this, when

schedulers dispatch to a thread, they are able to specify

that a one-shot timer should occur at some time in the

future. These timer interrupts are vectored to a “scheduler

thread”. To enable these one-shot programmed timers, we

use our platform’s TIM3 for this as it features low-overhead

programming times and cycle-accuracy.

FreeRTOS CPU paravirtualization. FreeRTOS itself is

abstracted by its designers to enable portable implementa-

tion of the system on various architectures. We modify the

hardware abstraction layer of FreeRTOS for it to execute

as a VM, only relying on the VMM and kernel services.

We provide Composite-specific implementations of some of

the lowest-level functions for dispatching, timer control, and

interrupts. Thread dispatch in FreeRTOS maps directly to

Composite dispatch, and requires only capabilities to the

threads that are provided to the VM, while timers are em-

ulated with the one-shot timer support discussed previously.

Interrupts are serviced by Composite threads that suspend

on rcv end-points, and are activated in response to hardware

interrupts.

B. I/O Virtualization

As discussed previously in § II-C, interaction with I/O de-

vices is performed via memory mapped interfaces at platform-

defined memory addresses. As the alignment and granularity

of these I/O devices in memory preclude fine-grained isolation

via MPU regions, we use an isolated I/O manager component

to mediate device accesses (see Figure 4). The I/O manager

is configured to allow each VM to access a subset of the

devices. Each VM makes requests via protected component

invocation to the I/O manager to read data from a device, or

write to a device. We currently configure this statically, and

more intelligent means are left as future work.

For I/O devices that have relatively low data rates, data is

passed in registers associated with Composite synchronous

invocations. For higher-rate devices, shared memory is used

to transfer data. If multiple VMs read data from the same

device, the I/O manager must multiplex the device. Thus



interrupts from the device are sent to the I/O manager, and

it sends software interrupts (through asnd end-points) to the

subscribing VMs. The priority of the interrupt thread in the

I/O manager is set to the ceiling of the VMs to receive

interrupts similar to [23].

FreeRTOS I/O virtualization. I/O routines within FreeR-

TOS are platform-specific, and we provide Composite-

specific versions that invoke the I/O manager. Data and events

due to I/O are exposed as FreeRTOS queues.

C. Memory Virtualization

As the system is a SASOS, it does not provide address

vitualization. Thus, the VMM’s memory management (im-

plemented in the scheduler for simplicity) uses the memory

layout derived is from the analysis in § III. The lack of

address translation hardware is the determining factor guiding

this design. The main limitation of requiring non-overlapping

VMs is that VMs must be re-linked (thus must be provided

as ELF objects with symbol information), and they cannot

be written in a way that assumes any static addresses. The

former likely limits the use of proprietary software, while the

latter is mostly used for I/O accesses which we address via

paravirtualization.

Position-independent VMs. To achieve some level of address

virtualization, we looked into software support. Ideally, the

OS component of each VM could be loaded to flash once, and

reused as a library in each VM to save space in Flash (only a

single image for N VMs). We initially investigated providing

this facility using a VM-specific Global Offset Table (GOT)

that maintains the address of each global variable. A register is

used to reference the GOT, thus allowing a single image to be

used across different VMs, with separate GOTs that translate

to the symbols within that image. However, this proved unsat-

isfactory as (1) portable compilers (gcc) generate expensive

translations for each variable, (2) RTOSes are often compile-

time specialized to their applications which prevents using a

single generic image, and (3) the execution cost of translation

is not well traded for memory given the relatively large flash

memories.

D. Inter-VM Communication

Past research has provided facilities for predictable inter-

VM communication [24]. We avoid the typical approach of

virtualizing inter-VM communication as network communi-

cation. This is due to the variety of networking stacks and

protocols in embedded systems, and because not every VM

wants (or should have to have) a networking stack that con-

sumes a non-trivial amount of memory. Instead, we provide

a communication abstraction that is closer to a point-to-point

serial line. This is implemented using sinv synchronous

invocation end-points, and data is pass in registers. The focus

of this abstraction is on low-bandwidth data movement, and

inter-VM event notification.

Shared memory regions are used for higher-bandwidth

data movement between VMs. These regions are set up in

accordance with the layout and potential MPU region solution

as discussed in §III. The I/O manager is responsible for setting
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Fig. 5: Hardware overheads. int is interrupt overhead, syscall
is system call overhead, MPU4 and MPU8 are for optimized MPU
programming overheads for 4 and 8 regions, respectively, and
STM1 is the ST Microelectronics hardware abstraction layer library
programming overhead for one MPU region.

up both the communication end-points between VMs, and,

where necessary, setting up the shared memory regions for

higher-bandwidth data movement.

FreeRTOS communication paravirtualization. As with the

rest of I/O, communication is integrated into FreeRTOS in

platform-specific code. Data and events from other VMs are

exposed as FreeRTOS queues.

VII. EVALUATION

Hardware configurations. For all evaluations, we use

an ARM Cortex-M7 microcontroller running at 216MHz

(STM32F767IGT6), with 512KB embedded SRAM and

1024KB embedded flash. The microcontroller has a 16KB

instruction cache and 16KB data cache, which are always

enabled. Also, to speedup instruction fetching from embedded

flash, the flash prefetch accelerator is always enabled. The

microcontroller also featured a double-precision FPU, which

is always disabled. We use the gcc compiler version 5.4.1,

with the -O2 optimization flag for all cases.

All measurements are repeated 10000 times, and the aver-

age, maximum, and standard deviation are calculated. All bar

graphs in this section depict the average (the bottom darker

bar), stdev (the error bar displayed on the average bar), and

maximum (the lighter top bar) measurements.

Software configurations. The Composite system is always

run with the VMM including the I/O manager, and system

scheduler components with enough untyped memory to sat-

isfy all requests from other components. Two VMs are loaded

for the measurements, and each VM runs one or more threads.

We use FreeRTOS version 9.0.0, and we evaluate the system

configured both with and without MPU support.

A. Microbenchmarks

Hardware overheads. Many system operations require in-

teracting with hardware features such as privilege modes,

the MPU, and interrupts. To understand the context for

the operating system and virtualization overheads, we first

investigate the hardware overheads for the relevant operations.

These provide a lower bound on the performance of the

software abstractions that use them. Figure 5 includes the

hardware overheads for mode transitions, interrupt overhead,

and MPU programming.

We measure interrupt overhead as the bare hardware over-

head for an interrupt. This overhead is measured using the

system call instruction with a system call handler that returns
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Fig. 6: Overheads of primary system operations, in Compos-
ite, FreeRTOS, and paravirtualized FreeRTOS. The Compos-
itemeasurements used in this comparison are all intra-component
measurements. ctx-r is the round-trip context switch time, int
is interrupt latency, msgpass is message-passing time. For FreeR-
TOS, message-passing is xQueueSend() and xQueueReceive();
for Composite, message-passing is asnd() and rcv().

immediately (using the BX LR instruction). In contrast, system

call overhead is measured using the handler in Composite

which is modified to return immediately. The difference in

these costs includes the small amount of logic for system call

routing in the kernel, and the saving and restoring additional

registers.

The costs of programming the MPU involve updating the

registers associated with the MPU as described in §V-A.

The overheads in this operation include saving CPU regis-

ters to the stack that will be clobbered, programming the

MPU registers, and restoring the clobbered registers. We

compare the overheads for using the ST Microelectronics

(STM)-provided Hardware Abstraction Layer (HAL) library

for MPU programming, and our optimized version that uses

ARM multi-register store operations. The optimized version

programs four registers at a time, thus we report both four

and eight region programming latencies.

Discussion. These results show that the average and worst-

case latencies for the hardware operations that we use to

provide increased isolation – including the programming of

the MPU – are not prohibitive. Of note, it is important

to use optimized routines for MPU programming as the

implementation in the STM HAL library has unnecessary

overhead. The variations in these measurements are generally

small, but the maximum values double or even triple the

average case. There are two reasons for this: (1) The system

contains instruction and data caches and a flash prefetcher,

which induce jitter when cache misses occurs, especially

when the cache is cold during the first few runs of the

benchmark. (2) The measurements are conducted with a 64-

bit timestamp counter simulated with 16-bit counters, which

causes overhead when its interrupt arrives. Thus, in realistic

production systems, the maximum values of these will rarely

be reached, and they may not be as large as shown.

Operating system operation overheads. To investigate the

cost of various primitive system abstractions in different

configurations of Composite and FreeRTOS, we compare:

(1) Composite component execution which directly uses

the system call API, (2) FreeRTOS which has no protec-

tion facilities thus represents the overhead of a lightweight

RTOS, (3) FreeRTOS/MPU which is FreeRTOS configured

to enable explicit programming support for the MPU, and
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(4) FreeRTOS/VM which executes paravirtualized FreeR-

TOS on top of the VMM and Composite system. These are

depicted in Figure 6. The core operations provided by these

systems include interrupt handling, thread context switching,

and inter-thread communication (which we call IPC).

All of these systems divide interrupt execution into “top

half” Interrupt Service Routine (ISR) execution, and “bottom

half” execution in the context of a thread. Interrupt latency

is measured as the time interval between the activation

of the ISR, and the start of the corresponding interrupt

handler threads execution. In Composite, this is measured

by activating a kernel “asynchronous send” (asnd) endpoint

in the ISR, that then activates an interrupt thread blocked

waiting on a “receive” (rcv) endpoint. In FreeRTOS, the

measurement is done in a similar fashion: the ISR will use

xQueueSendFromISR() to send to a queue, thus activating

the interrupt thread. In all cases, the time interval between

entering the ISR and beginning the interrupt thread’s execu-

tion is measured. In FreeRTOS/VM, the latency is measured

between the execution of Composite’s hardware ISR, and

when a paravirtualized FreeRTOS thread receives from its

interrupt queue.

Discussion. In many cases, FreeRTOS represents a lower

bound on the overheads we can expect. It includes no protec-

tion facilities, and includes highly optimized versions of many

routines such as thread dispatch. We would expect at least the

additional overheads from Figure 5 in any system that uses

MPU-based protection. The results show that Composite’s

operations are generally on par with the FreeRTOS/MPU,

with the exception of thread context switch costs. Context

switching costs in both Composite and FreeRTOS/MPU

exhibit overheads over FreeRTOS due to system call and

MPU programming costs. FreeRTOS/VM exhibits overheads

both from FreeRTOS (due to its scheduling logic), and from

Composite (which performs the thread context switch).

Interestingly, Composite’s message-passing operations are

faster, as the Composite system is highly optimized for mes-

sage passing. For interrupt handling latency, most of the over-

head for FreeRTOS/VM comes from hierarchical scheduling

overheads that are generally small on larger systems, but

prevalent here. The largest component of this overhead is due

to a current policy in the Composite scheduling libraries that

always switch to a scheduler thread after an interrupt thread’s

execution. The resulting additional thread dispatch overheads

increase interrupt latency. Though this design is not necessary,

we have not yet investigated optimizing it for this system.

To better understand the real impact of these overheads,

particularly those involving interrupts, we plot the percentage
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Fig. 8: Overheads of Composite system operations. ctx1-r and
ctx2-r are intra- and inter- component round-trip context switch
times, respectively, sinv is synchronous invocation enter time, sret
is synchronous invocation return time, int is interrupt latency, snd1
and snd2 are intra- and inter- component asynchronous send/receive
time, respectively.

of system overheads vs. interrupt inter-arrival time in Figure 7.

Please note that the axis goes from a high interrupt inter-

arrival rate (low frequency) to a low inter-arrival rate (high

frequency). The labels denote typical interrupt inter-arrival

times for real devices (from product sheets). Motion is for ac-

celerometers for step and motion-detection applications, HID

are human interface devices such as mouses and keyboards,

Sensor includes sensors such as accelerometers for detecting

finer-grained motion, CAN is a CAN bus, and Motor is for

control of a typical electric stepping motor. A CAN bus

at a 125-kbps with typical packet sizes, generates close to

1kHz interrupts. For the electric motor, we assume a common

motor that runs at approximately 60 rpm, and the interrupts

come from a coaxial 1000-step-per-rotation encoder. Note

that the FreeRTOS/MPU and Composite lines are mostly

overlapping.

Discussion. From the graph we can conclude that even the

relatively higher costs of the isolation provided by the VM

infrastructure are reasonable at many of these interrupt rates,

often imposing less than 1% overhead. Nonetheless, some

applications may require lower interrupt response time, and

hence more efficient interrupt response logic. In such cases,

the Composite native functionality’s overhead is on par with

FreeRTOS/MPU and not much more than FreeRTOS, while

providing strong isolation.

Composite microbenchmarks. To better understand these

results, we perform a number of measurements on the base

Composite system (Figure 8). In this part, we discuss the fol-

lowing operations of Composite: (1) intra-component thread

switch, (2) inter-component thread switch, (3) synchronous

invocation entering time, (4) synchronous invocation returning

time, (5) interrupt latency, (6) intra-component asynchronous

communication time, and (7) inter-component asynchronous

communication time.

Intra-component thread switch (ctx1-r) time is the cost of

a round trip switch between two threads using the Composite

dispatch between threads in the same component, while inter-

component thread switch (ctx2-r) time is between two

threads in separate protection domains (as used by the VMM

scheduler to switch between VMs). The difference between

these is that inter-component thread switch will program the
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Fig. 9: Overheads of primary system operations in paravirtualized
FreeRTOS(FreeRTOS/VM). ctx-r is round-trip context switch
time, vect2vm is the time from Composite interrupt vector to
FreeRTOS interrupt vector inside the VM, vec2thd is the total
time from Composite interrupt vector to the FreeRTOS receiving
thread, qsnd is FreeRTOS queue send/receive time, and isnd the
cost of a send.

MPU twice (when crossing protection domains), while the

intra-component thread switch does not program the MPU.

There are two types of IPC mechanisms in Compos-

ite: synchronous invocation (sinv/sret) via thread mi-

gration [20], and asynchronous send/receive (asnd/rcv).

Synchronous invocation between two components involves

switching between components (including MPU program-

ming and system calls), and is the most common communica-

tion mechanism between memory-isolated components. snd1

measures the latency between a asnd, and the activation of

the thread that is waiting on rcv where both threads are in

the same component. In contrast, snd2 is between threads

in different components, thus requires MPU programming.

Interrupt latency int is replicated from Figure 6 and demon-

strates the expected intuition that interrupt latency is very tied

to asynchronous communication. This is unsurprising as these

two operations share the same abstractions and code.

B. Virtualization Evaluation

The virtualization environment constructed in Composite

along with the paravirtualization of FreeRTOS entail over-

heads on system operations. These are investigated in more

detail in Figure 9. ctx-r displays a round-trip context switch

via FreeRTOS’s taskYIELD(). This operation involves both

FreeRTOS scheduling, and the scheduling libraries (and

dispatch) in Composite.

We focus on the evaluation of two aspects of paravirtualized

interrupt latency. First, vect2vm is the time from the Com-

posite kernel interrupt vector/ISR execution to the execution

of the FreeRTOS ISR in the VM. Second, vect2thd is time

from the Composite ISR, to the execution of the FreeRTOS

receiving thread. We can see from this result, that the majority

of the overhead comes from delivering the interrupt within

FreeRTOS. This validates our previous analysis: the current

implementation of the scheduler library always switches back

to a “scheduler thread” after processing an interrupt, and the

resulting context switch costs are significant. We will optimize

this in future work, but as we have shown in Figure 7, current

overheads are reasonable for many forms of I/O.

Lastly, we measure both the cost of communication be-

tween tasks in FreeRTOS/VM using xQueueSend() and

xQueueReceive(), and between different VMs. Inter-VM

communication is performed via virtual interrupts. A sending-

VM initiates a synchronous invocation to the destination VM



Segment Name .text .data .bss

Kernel 134727 158 36816

Scheduler 65012 8192 15612

I/O Manager 508 4 512

FreeRTOS 47920 2652 9196

FreeRTOS/MPU 58865 3012 8908

FreeRTOS/VM 38177 12740 17260

TABLE I: System memory overheads.

which executes xQueueSendFromISR() to emulate interrupt

reception. The intra-VM communication measurement is con-

ducted by measuring the time difference between entering

of xQueueSend() in the sending thread and the exiting of

xQueueReceive() in the receiving thread. The inter-VM

communication measurement, measures the round-trip costs

of the inter-VM invocation (via sinv and ret) wrapped in

the FreeRTOS paravirtualization layers.

Discussion. These results confirm the source of the interrupt

overheads of the virtualized environment seen in Figure 6

which are mainly due to excessive thread context switches.

The difference between the qsnd and isnd communication

mechanisms is interesting: inter-VM communication is sig-

nificantly faster than FreeRTOS API-based communication

within a VM. Note that isnd is a “round-trip” measurement,

while qsnd is a “one-way” measurement. Thus, our inter-

VM communication is more than twice as efficient as intra-

VM communication. This is mostly due to the inter-VM

communication’s direct reliance on optimized Composite

IPC mechanisms.

C. Paravirtualization Complexity

Paravirtualization relies on modifications to the lowest-

levels of the virtualized OS. In FreeRTOS/VM, we port

the hardware-specific platform layer of FreeRTOS to use

Composite scheduling support, timer support, and I/O (via

invocations to the I/O manager component). This platform

implementation is 363 Source Lines of Code (SLOC). In

contrast, the bare-metal platform layer for our microcontroller

is 483 SLOC without MPU support, and 622 SLOC with

MPU support. Though SLOC is not a perfect measure of

complexity, we conclude that paravirtualizing FreeRTOS in

Composite is not a major effort, and we anticipate that other

RTOSes could be ported to the system.

D. Memory Virtualization Overheads

We have evaluated the ability of the system to provide

increased isolation through virtualization with reasonable

overhead while maintaining predictability. Another important

aspect of the system is the memory overhead, and how

effectively memory can be laid out to best use the MPU for

protection (§III). Additionally, both the kernel, and the com-

ponents constituting the VMM require memory. We compare

against the .text, .data and .bss sections of a minimal

FreeRTOS configuration as a baseline.

Kernel and virtualization overheads. The size of each

software component is shown in the Table I. The kernel

and VMM components impose a constant memory overhead,

while the overhead for the changes in the size of FreeRTOS

increase with the number of VMs. Paravirtualized FreeR-

TOS consumes more RAM mainly due to the Composite

Sharing Config. System Only System + Chaining System + PubSub

VM Configuration 1 0.528 0.494 0.494

VM Configuration 2 0.600 0.564 0.564

VM Configuration 3 0.534 0.499 0.499

VM Configuration 4 0.400 0.370 0.370

VM Configuration 5 0.487 0.453 0.453

TABLE II: Memory assignment overheads measured as the fraction
of used memory.

user-level scheduling library that statically allocates threads;

however, its code size shrinks because architecture-dependent

code is effectively moved to the Composite kernel. FreeR-

TOS does dynamic allocation of system resources (including

threads and queues), so this table is not a perfect representa-

tion of memory requirements as FreeRTOS will require more

at run-time. We believe that these overheads are reasonable

for many systems.

Memory Assignment Algorithm effectiveness.

Static memory layouts are determined by the algorithm in

§III that attempts to best use the available MPU regions and

subregions. However, these layouts are heavily influenced by

the MPU alignment and sizing constraints, thus producing

internal fragmentation.

To evaluate the memory overheads of our system, we test

five different configurations of VMs, with three different

shared memory setups. These setups all involve VMs run-

ning MiBench [25] applications with memory requirements

detailed in Table III. Each small VM contains one MiBench

application. Each big VM contains all five MiBench applica-

tions that have distinct memory sizes (see Table III). Our

five different configurations are as follows: (1) 3 small

(basicmath, dijkstra, gsm), (2) 3 small + 1 big (basicmath,

dijkstra, gsm, big), (3) 4 small + 1 big (basicmath, dijkstra,

gsm, pbmsrch, big), (4) 5 small (basicmath, dijkstra, gsm, pbmsrch,

rijndael), and (5) 5 small + 1 big (basicmath, dijkstra, gsm,

pbmsrch, rijndael, big). Each of these setups also includes the

kernel and VMM components. Each VM is compiled the

applications and paravirtualized FreeRTOS.

As shared memory for inter-VM and VM/VMM commu-

nication is essential and complicates MPU region placement,

we investigate three sharing configurations:

• Pairwise shared regions between each VM and the I/O

manager.

• The same as the first, but also with shared memory

connecting the VMs in a ring. This roughly mimics a

sensor processing pipeline of filters and transformations.

• The same as the first, but with shared memory configured

as a publisher-subscriber network, where each VM can

write to a shared memory location that every other VM

can read (pairwise sharing between each VM).

To determine the size of these regions, we observe that packet

sizes of 256 bytes are common on these platforms2. A realistic

ring buffer size – 16 – yields a shared region of 4096 bytes.

To evaluate the overhead in each configuration, we apply

the memory assignment algorithm. We give the system a

configurable amount of SRAM, and run the heuristic with

ever smaller amounts of memory until it fails to find an

assignment when given XKB. The total used memory for

2For example, IoT devices communicating using MQTT (http://mqtt.org/).

http://mqtt.org/


each configuration is Y KB, and Table II includes the memory

overhead ((X − Y )/Y ).

Discussion. Internal fragmentation for power-of-two sized

regions has an average overhead of 25% which we are

exceeding at ∼ 50%. Though this overhead is reasonable (e.g.

compared to page-table’s memory, alignment, and granularity

requirements), it is by no means optimal. In contrast, our

initial design of this algorithm based on an SMT formula-

tion with much simpler configurations tended to demonstrate

overheads on the order of 10%. The ∼ 50% overheads this

heuristic exhibits represent the trade-off between a reasonable

solution, and long runtimes.

VM scalability. With an increasing need for isolation, a single

system will include multiple VMs. To evaluate the scalability

of the system to an increasing number of VMs, we factor in

the size of each VM, and the necessary MPU alignment con-

siderations. Each FreeRTOS/VM (with no application) can

fit into one 32KB memory block. If all virtual machines are

empty, eight will fit into the memory of the STM32F767IGT6

(512KB SRAM) along with the kernel and the VMM compo-

nents with 128KB left over for shared mappings and dynamic

allocations. This represents a limit based solely on system

overheads, and large or computationally hungry applications

would practically force fewer VMs. Even for existing systems,

this context is useful if a system with a large number of

applications wished to isolate different subsets of them in

different VMs. Regardless, this represents a surprising level

of VM scalability for such a small system.

VM Name .text .data .bss

basicmath 61961 12740 17260

dijkstra 64256 12744 57708

gsm 86545 12932 17260

pbmsrch 63264 12744 18284

rijndael 80576 12748 17260

big 193512 12948 59244

TABLE III: VM memory overheads.

To understand the scalability of the system with applica-

tions, Table III includes the memory requirements for differ-

ent MiBench [25] applications compiled with paravirtualized

FreeRTOS. In realistic settings, the applications inside a VM

are comparable or smaller than the VM memory footprint.

Thus, a mid-range microcontroller can easily fit four VMs,

while the high-end microcontrollers with more (1MB or more)

SRAM can easily fit 12 or more VMs.

VIII. RELATED WORK

Avoiding hardware protection. Many memory-constrained

systems provide isolation via language safety. These include

TinyOS [26] and Tock [14]. These have the benefit that

software bugs are confined by software checks based on type-

safety which can lead to low overheads for many operations.

However, this makes virtualization of separate code bases dif-

ficult. Other projects use safe languages on microcontrollers,

but focus on programmability at the cost of performance and

predictability [27], [28], [29], [30].

In contrast, other embedded OSes don’t focus on safety

and instead on memory usage and/or dynamic update [31],

[32], [26], [33]. Though these dimensions are important, we

focus on an infrastructure for predictabily providing isolation

between multiple components or virtual machines. Of note,

the static memory layout that enables adequate region-based

protection is performed with full knowledge of all system

components. This complicates dynamic update; the ability to

update layouts at run-time is future work.

Some systems simplify protection domain interactions

(IPC) down to function calls for performance, and use co-

routines, or cooperative scheduling [32], [26], [14]. This de-

sign decision is appropriate when there is high confidence that

all code adheres to low, bounded execution times, otherwise

this non-preemptibility prohibits temporal isolation.

Explicitly managing the MPU. As discussed in section

§II-D, many embedded OSes provide APIs to specifically

program MPU regions. Such systems do not concentrate on

providing a general interface for MPU programming, nor do

they pair these facilities with a memory layout algorithm to

efficiently use the MPU with sharing and virtualization.

MPU as cache. Previous versions of embedded Linux sup-

ported MPUs as a software-managed cache of accessible

regions. More mappings could be created for a process

than the number of regions on the system, and those not

active cause faults when their memory is accessed. Software

handlers (similar to software TLB misses) define how the

regions are tracked, and the region eviction policy determines

which region to drop when a new region needs to be activated.

Though this generalizes MPU regions to an arbitrary number

of regions, it imposes unpredictable overheads similar to

those imposed by TLB misses and hardware page-table walks.

For resource-constrained microcontrollers, this technique pro-

vides maximum compatibility with the MMU programming

paradigm, but can lead to unpredictable execution and large

overheads when memory accesses happen in a specific order.

This work aims to maximally use the MPU by employing

a static analysis while ensuring predictable, protection-fault-

free execution of embedded code.

Virtualization support. To the best of our knowledge, this

paper presents the first virtualization infrastructure for MPU-

based microcontrollers. Similar to our I/O virtualization, [12]

implements a FreeRTOS task that handles I/O, and other

tasks indirect their I/O accesses through it. In contrast, our

research focuses a virtualization infrastructure that enables

isolation in all of CPU, memory, and I/O.

IX. CONCLUSIONS

This paper has introduced an infrastructure to support

strong isolation along the CPU, memory, and I/O dimensions.

We have shown how a somewhat limited MPU can be

effectively used to provide fine-grained isolation through a

combination of a static memory placement algorithm, and an

efficient kernel representation that generalizes different hard-

ware protection mechanisms. The VM infrastructure supports

paravirtualized FreeRTOS, and can easily scale to 8 VM

instances.
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